Cold nuclear matter experiments

Volker Metag
II. Physikalisches Institut

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

Outline
• motivation
• experimental approaches for studying in-medium properties of mesons
• in-medium properties of ρ, ω, and Φ meson
• summary and outlook

*funded by the DFG within SFB/TR16

Electromagnetic probes of strongly interacting matter
ECT* Trento, Italy
May 20-24, 2013
hadrons = excitations of the QCD vacuum
QCD vacuum: complicated structure characterized by condensates
in the nuclear medium: condensates are changed

\[m \approx \langle \bar{q}q \rangle_0 \approx 0.8(\rho \approx \rho_0) \]

\[\frac{m^*}{m} \approx \frac{\langle \bar{q}q \rangle^*}{\langle \bar{q}q \rangle_0} \approx 0.8(\rho \approx \rho_0) \]

\[\frac{m^*_V}{m_V} = \left(1 - \alpha \frac{\rho}{\rho_0}\right); \alpha \approx 0.18 \]

widespread theoretical and experimental activities to search for in-medium modifications of hadrons
QCD sum rule approach: drop of ρ, ω mass by about 10% at average nuclear density of 0.6 ρ

spectral function for ω meson at rest: splitting into ω-like and N^*N^{-1} mode due to coupling to S_{11} resonance; almost no mass shift; strong in-medium broadening
model predictions for spectral function of the ρ meson

- structure in ρ spectral function due to coupling to baryon resonances
- strong momentum dependence
- modifications most pronounced at small momenta

M. Post et al, NPA 741 (2004) 81
model predictions for spectral function of the ρ meson

- structure in ρ spectral function due to coupling to baryon resonances
- strong momentum dependence
- modifications most pronounced at small momenta

experimental task: search for \{ mass shift ? broadening ? structures ? \} of hadronic spectral function

ensure acceptance for low meson momenta !!
- **heavy-ion collisions:**
 - CERN SPS: HELIOS-3, CERES, NA60, $\sqrt{s} = 17$ GeV;
 - BNL RHIC: PHENIX, STAR, $\sqrt{s} = 200$ GeV;
 - GSI SIS18: HADES, $\sqrt{s} \approx 3$ GeV
 - probes: $e^+e^-, \mu^+\mu^-$, acceptance for $p_t > 0$ MeV/c

- **proton induced reactions:**
 - KEK: 12 GeV p;
 - probes: e^+e^-, K^+K^-; acceptance for meson momenta > 800 MeV/c
 - COSY ANKE: p 1.0 - 3.5 GeV/c;
 - probes: K^+K^-; acceptance for meson momenta 0.6-1.6 GeV/c
 - GSI SIS18: HADES, $\sqrt{s} \approx 3$ GeV
 - probes: e^+e^-, K^+K^-; acceptance for meson momenta > 50 MeV/c

- **photon induced reactions:**
 - LEPS@SPRING8: 1.4-2.5 GeV
 - probes K^+K^-; acceptance for meson momenta > 1.2 GeV/c
 - JLab CLAS: 0.6-3.5 GeV
 - probes: e^+e^-; acceptance for meson momenta > 0.8 GeV/c
 - CBELSA/TAPS: 0.8-3.1 GeV
 - probes: photons; acceptance for meson momenta > 0 MeV/c
 - CB/TAPS@MAMI: 0.9-1.4 GeV
 - probes: photons; acceptance for meson momenta > 0 MeV/c
From theoretical predictions to experimental observables
calculations of meson spectral functions assume:
- infinitely extended nuclear matter in equilibrium at $\rho, T = \text{const.}$;
- meson at rest in nuclear medium
From theoretical predictions to experimental observables

calculations of meson spectral functions assume:
• infinitely extended nuclear matter in equilibrium at $\rho, T = \text{const.}$;
• meson at rest in nuclear medium
calculations of meson spectral functions assume:

- infinitely extended nuclear matter in equilibrium at $\rho, T = \text{const.}$
- meson at rest in nuclear medium

transport calculations (GiBUU, HSD, UrQMD, MCMC...)
are needed for comparison with experiment !!!

- initial state effects: absorption of incoming beam particles
- non equilibrium effects: varying density and temperature
- absorption and regeneration of mesons
- fraction of decays outside of the nuclear environment
- final state interactions: distortion of momenta of decay products
experimental approaches for studying in-medium effects of mesons in photon- and proton- induced reactions

meson-nucleus optical potential:

\[U(r) = V(r) + iW(r) \]
meson-nucleus optical potential:

\[U(r) = V(r) + iW(r) \]

meson mass shift

\[V(r) = \Delta m_0 \cdot \frac{\rho(r)}{\rho_0} \]
experimental approaches for studying in-medium effects of mesons in photon- and proton- induced reactions

meson-nucleus optical potential:

\[U(r) = V(r) + iW(r) \]

meson mass shift

\[V(r) = \Delta m_0 \cdot \frac{\rho(r)}{\rho_0} \]

meson absorption

\[W(r) = -\frac{\Gamma_0}{2} \cdot \frac{\rho}{\rho_0} \]

\[= -\frac{1}{2} \cdot \hbar c \cdot \rho(r) \cdot \beta \cdot \sigma_{inel} \]
experimental approaches for studying in-medium effects of mesons in photon- and proton- induced reactions

Meson-nucleus optical potential:

\[
U(r) = V(r) + iW(r)
\]

Meson mass shift

\[
V(r) = \Delta m_0 \cdot \frac{\rho(r)}{\rho_0}
\]

Meson absorption

\[
W(r) = -\frac{\Gamma_0}{2} \cdot \frac{\rho}{\rho_0} = -\frac{1}{2} \cdot \hbar c \cdot \rho(r) \cdot \beta \cdot \sigma_{inel}
\]

- **Lineshape analysis**
 \[
 M \rightarrow X_1 + X_2
 \]
 \[
 m_M(\rho, \vec{p}) = \sqrt{(p_1 + p_2)^2}
 \]

- **Analysis of meson momentum distribution**

- **Meson-nucleus bound states**
experimental approaches for studying in-medium effects of mesons in photon- and proton- induced reactions

meson-nucleus optical potential:

\[U(r) = V(r) + iW(r) \]

meson mass shift

\[V(r) = \Delta m_0 \cdot \frac{\rho(r)}{\rho_0} \]

meson absorption

\[W(r) = -\frac{\Gamma_0}{2} \cdot \frac{\rho}{\rho_0} = -\frac{1}{2} \cdot \hbar c \cdot \rho(r) \cdot \beta \cdot \sigma_{inel} \]

- lineshape analysis
 \[M \rightarrow X_1 + X_2 \]
 \[m_M(\rho, \vec{p}) = \sqrt{(p_1 + p_2)^2} \]

- analysis of meson momentum distribution

- meson-nucleus bound states

- transparency ratio
 \[T_A = \frac{\sigma_{\gamma A \rightarrow \omega X}}{A \cdot \sigma_{\gamma N \rightarrow \omega X}} \]
measurement of the transparency ratio

\[T_A = \frac{\sigma_{\gamma A \rightarrow \omega X}}{A \cdot \sigma_{\gamma N \rightarrow \omega X}} \]
transparency ratio measurement

attenuation measurement of meson flux:
(D. Cabrera et al., NPA 733 (2004) 130)

\[T_A = \frac{\sigma_{\gamma A \rightarrow \omega X}}{A \cdot \sigma_{\gamma N \rightarrow \omega X}} \]

production probability per nucleon within the nucleus compared to production probability on the free nucleon;

inelastic channels: \(\pi / \eta \)
transparency ratio measurement

attenuation measurement of meson flux:
(D. Cabrera et al., NPA 733 (2004) 130)
\[T_A = \frac{\sigma_{\gamma A \rightarrow \omega X}}{A \cdot \sigma_{\gamma N \rightarrow \omega X}} \]

production probability per nucleon within the nucleus compared to production probability on the free nucleon;

inelastic reactions remove mesons, e.g. \(\omega, N \rightarrow \pi N, \eta N \)
shortening of \(\omega \) lifetime in the medium \(\Rightarrow \) increase in width

low density approximation:
\[\Gamma(\rho) = -\frac{Im\Pi(\rho)}{E} = \hbar c \cdot \rho \cdot \beta \cdot \sigma_{inel}; \quad \Gamma(\rho) = \frac{\Gamma(\rho_0)}{\rho_0} \frac{\rho}{\rho_0} \]

information on imaginary part of meson-nucleus potential

width = property of the meson-quasi-particle in the medium, reflecting the interaction with the nuclear environment
transparency ratio measurement

attenuation measurement of meson flux:
(D. Cabrera et al., NPA 733 (2004) 130)

\[T_A = \frac{\sigma_{\gamma A \rightarrow \omega X}}{A \cdot \sigma_{\gamma N \rightarrow \omega X}} \]

production probability per nucleon within the nucleus compared to production probability on the free nucleon;

inelastic reactions remove mesons, e.g. \(\omega, N \rightarrow \pi N, \eta N \)

shortening of \(\omega \) lifetime in the medium \(\Rightarrow \) increase in width

low density approximation: \(\Gamma(\rho) = -\frac{Im \Pi(\rho)}{E} = \hbar c \cdot \rho \cdot \beta \cdot \sigma_{\text{inel}}; \quad \Gamma(\rho) = \Gamma(\rho_0) \frac{\rho}{\rho_0} \)

information on imaginary part of meson-nucleus potential

width = property of the meson-quasi-particle in the medium, reflecting the interaction with the nuclear environment

applicable to any meson lifetime !!

information on in-medium properties of mesons from measurement of their decay outside of the nucleus
systematic uncertainties in measurement and interpretation of the transparency ratio

1.) secondary production in multi-step processes

\[\gamma \, N_1 \rightarrow \pi \, N_1 \]
\[\pi \, N_2 \rightarrow \omega \, N_2 \]

second generation particles have on average lower momenta
⇒ apparent increase of transparency ratio at low meson momenta
⇒ \textit{momentum dependence} of transparency ratio
systematic uncertainties in measurement and interpretation of the transparency ratio

1.) secondary production in multi-step processes

\[\gamma N_1 \rightarrow \pi N_1 \]
\[\pi N_2 \rightarrow \omega N_2 \]

second generation particles have on average lower momenta
⇒ apparent increase of transparency ratio at low meson momenta
⇒ momentum dependence of transparency ratio

2.) photon shadowing:
due to hadronic fluctuations photons do not reach all nucleons
⇒ apparent reduction of transparency ratio

\[A \Rightarrow A_{\text{eff}} \text{ (below 2 GeV < 10\% effect)} \]
systematic uncertainties in measurement and interpretation of the transparency ratio

1.) secondary production in multi-step processes

\[\gamma N_1 \rightarrow \pi N_1 \]
\[\pi N_2 \rightarrow \omega N_2 \]

second generation particles have on average lower momenta
⇒ apparent increase of transparency ratio at low meson momenta
⇒ momentum dependence of transparency ratio

2.) photon shadowing:
due to hadronic fluctuations photons do not reach all nucleons
⇒ apparent reduction of transparency ratio

\[A \Rightarrow A_{\text{eff}} \text{ (below 2 GeV < 10\% effect)} \]

3.) two-body absorption processes:
absorption processs involving 2 nucleons distort \(\Gamma \rightarrow \sigma_{\text{inel}} \) conversion

systematic uncertainties in measurement and interpretation of the transparency ratio

1.) secondary production in multi-step processes

\[\text{e.g. } \gamma N_1 \rightarrow \pi N_1 \]
\[\pi N_2 \rightarrow \omega N_2 \]

second generation particles have on average lower momenta
\Rightarrow \text{apparent increase of transparency ratio at low meson momenta}
\Rightarrow \text{momentum dependence of transparency ratio}

2.) photon shadowing:
due to hadronic fluctuations photons do not reach all nucleons
\Rightarrow \text{apparent reduction of transparency ratio}
\[A \Rightarrow A_{\text{eff}} \text{ (below 2 GeV < 10\% effect)} \]

3.) two-body absorption processes:
absorption processs involving 2 nucleons distort \[\Gamma \rightarrow \sigma_{\text{inel}} \text{ conversion} \]
distortions can be reduced by taking light nucleus like C as reference:
\[
T_A^C = \frac{11.4 \times \sigma_{\gamma A \rightarrow \omega X}}{A_{\text{eff}} \times \sigma_{\gamma C \rightarrow \omega X}}
\]
photoproduction of ω off p, d, C, Ca, Nb, Pb

CB/TAPS@ELSA $\omega \rightarrow \pi^0 \gamma \rightarrow 3\gamma$

M. Kotulla et al, PRL 100 (2008) 192302

$E_\gamma = 1200 - 2200$ MeV

ω photoproduction on the proton and deuteron;
F. Dietz et al.

- free proton
- bound proton
- bound neutron

$E_\gamma = 1.9-2.0$ GeV
$\gamma d \rightarrow \omega n(p)$
$\gamma d \rightarrow \omega p(n)$

bound neutron
bound proton

incident beam energy E_γ [GeV]
transparency ratio normalized to carbon: \(T_A^C = \frac{11.4 \times \sigma_{\gamma A \rightarrow \omega X}}{A_{\text{eff}} \times \sigma_{\gamma C \rightarrow \omega X}} \)

comparison to calculations: Mühlich and Mosel; Ramos and Oset

M. Kotulla et al.,
PRL 100 (2008) 192302

low density approximation:
\[\Gamma(\rho_0) = \hbar c \cdot \beta \cdot \rho_0 \cdot \sigma_{\text{inel}} \]
\[\sigma_{\omega N} \approx 60 \text{ mb} \]
transparency ratio normalized to carbon:

\[T^C_A = \frac{11.4 \times \sigma_{\gamma A \rightarrow \omega X}}{A_{eff} \times \sigma_{\gamma C \rightarrow \omega X}} \]

comparison to calculations: Mühlich and Mosel; Ramos and Oset

M. Kotulla et al.,
PRL 100 (2008) 192302

low density approximation:

\[\Gamma(\rho_0) = \frac{\hbar c \cdot \beta \cdot \rho_0 \cdot \sigma_{inel}^{inel}}{\sigma_{\omega N}^{inel}} \approx 60 \text{ mb} \]

no strong variation of transparency ratio with meson momentum;
\[\Rightarrow \text{no evidence for two-step processes} \]
comparison to CLAS measurement of ω transparency ratio

M.H. Wood et al., PRL 105 (2010) 112301

long standing puzzle:
much stronger ω absorption observed by CLAS than by CBELSA/TAPS (when normalized to carbon)
comparison to CLAS measurement of ω transparency ratio

M.H. Wood et al., PRL 105 (2010) 112301

long standing puzzle: much stronger ω absorption observed by CLAS than by CBELSA/TAPS (when normalized to carbon)

$$T_A \Gamma_{12}^C$$

$$T_A^D = \frac{\sigma_{\gamma A \rightarrow \omega X}}{Z_{eff} \sigma_{\gamma p^{bound}} + N_{eff} \sigma_{\gamma n^{bound}}}$$

T_C normalized to ^2H

CLAS: 0.9 ± 0.2

CBELSA/TAPS: 0.46 ± 0.05

CLAS T_A-values for $A>50$ consistent with CBELSA/TAPS data when normalized to ^2H

⇒ normalization problem ??
momentum dependence in transparency ratio: dilepton production

\[\pi^0, \eta \rightarrow \gamma e^+ e^-; \omega \rightarrow \pi^0 e^+ e^-; \]
\[\Delta, N^* \rightarrow N e^+ e^-; \rho, \omega \rightarrow e^+ e^- \]
momentum dependence in transparency ratio: dilepton production

$\pi^0, \eta \rightarrow \gamma e^+e^-; \omega \rightarrow \pi^0 e^+e^-;
\Delta, N^* \rightarrow N^e e^-; \rho, \omega \rightarrow e^+e^-$

$R_{pA} = \frac{d\sigma / dp^p}{d\sigma / dp^p_{part}} \cdot \frac{A_{pp}^{pN_b}}{A_{pp}^{pN_b}_{part}} \cdot \frac{\sigma_{pp}^{reaction}}{\sigma_{pN_b}^{reaction}}$

momentum dependence of dilepton spectra; \Rightarrow two-step production processes
the higher the e^+e^- invariant mass the stronger the momentum dependence;
no momentum dependence for transparency ratio of identified ω
extraction of in-medium width and inelastic cross section for ϕ

LEPS@SPring-8

$\gamma A \rightarrow \phi + X \rightarrow K^+ K^- + X; \ E_\gamma = 1.5 - 2.4 \text{ GeV}$

T. Ishikawa et al., PLB 608 (2005) 215

$\sigma_{\phi N} = 27 \text{ mb}$

$\Gamma(\rho_0) = \hbar c \cdot \rho_0 \cdot \beta \cdot \sigma_{\text{inel}} \approx 80 \text{ MeV}$

T. Ishikawa et al., PLB 608 (2005) 215

$\sigma_{\phi N}^A = 35^{+17}_{-11} \text{ mb} \gg \sigma_{\phi N}^{\text{free}} = 7.7 - 8.7 \text{ mb}$

$\Gamma(\rho_0) = \hbar c \cdot \rho_0 \cdot \beta \cdot \sigma_{\text{inel}} \approx 100 \text{ MeV \ for \ } \langle p_{\phi} \rangle = 1.8 \text{ GeV/c; \ } \langle \beta_{\phi} \rangle = 0.87$
momentum dependence of Φ meson transparency ratio

ANEK@COSY: $p\ (2.83\ \text{GeV}) \rightarrow C, Cu, Ag, Au$

$\Phi \rightarrow K^+ K^-$

A. Polyanski et al., PLB 695 (2011) 74
M. Hartmann, et al., PRC 85 (2012) 935206

transparency ratio momentum dependent:
\Rightarrow two-step production processes important
momentum dependence of Φ meson transparency ratio

ANKE@COSY: p (2.83 GeV) \rightarrow C, Cu, Ag, Au

$\Phi \rightarrow K^+ K^-$

A. Polyanski et al., PLB 695 (2011) 74
M. Hartmann, et al., PRC 85 (2012) 935206

transparency ratio momentum dependent:
\Rightarrow two-step production processes important

evidence for increase of Φ meson width with momentum,
consistent with earlier Spring8 and JLab measurements

$\Gamma_\Phi \approx 30 - 60$ MeV
$\sigma_{\Phi N} \approx 14 - 21$ mb
for $p_\Phi \approx 0.6 - 1.6$ GeV/c
what have we learned from transparency ratio measurements?

- Transparency ratio measurements provide information on absorption of mesons in nuclei \(\Rightarrow \) imaginary part \(W(\rho=\rho_0) \) of meson-nucleus potential; applicable for any meson lifetime

- \(\omega, \eta', \Phi \) mesons show broadening in nuclei; lifetime shortened (width increased) by inelastic processes

<table>
<thead>
<tr>
<th>Particle</th>
<th>(\Gamma(\rho_0)) [MeV]</th>
<th>(\langle p \rangle) [GeV/c]</th>
<th>(W(\rho=\rho_0)) [MeV]</th>
<th>(\sigma_{\text{inel}}) [mb]</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega)</td>
<td>130-150</td>
<td>1,1</td>
<td>65-75</td>
<td>(\approx) 60</td>
<td>CBELSA/TAPS</td>
</tr>
<tr>
<td>(\eta')</td>
<td>15-25</td>
<td>1,1</td>
<td>7.5-12.5</td>
<td>3-10</td>
<td>CBELSA/TAPS</td>
</tr>
<tr>
<td>(\Phi)</td>
<td>30-60</td>
<td>0.6-1.4</td>
<td>15-30</td>
<td>14-21</td>
<td>ANKE@COSY</td>
</tr>
<tr>
<td>(\Phi)</td>
<td>100(^{+50}_{-30})</td>
<td>1.8</td>
<td>50(^{+25}_{-15})</td>
<td>35(^{+17}_{-11})</td>
<td>LEPS@SPring-8</td>
</tr>
</tbody>
</table>
determination of the real part of the meson-nucleus potential: line shape analysis

\[M \rightarrow X_1 + X_2; \quad m(\rho, \vec{p}) = \sqrt{(p_1 + p_2)^2} \]

sensitive to nuclear density at decay point

1.) ensure sizable fraction of decays in the nuclear medium: ⇒ select short lived mesons or cut on recoil momentum

2.) avoid distortion of 4-momentum vectors by final state interactions ⇒ dilepton spectroscopy: \(\rho, \omega, \Phi \rightarrow e^+e^- \)

disadvantage: small branching ratio \(\approx 10^{-4} - 10^{-5} \)

\(\omega \rightarrow \pi^0\gamma \rightarrow 3\gamma; \) br=8.3% ; disadvantage: \(\pi^0 \)-FSI

3.) measured mass distribution = convolution of spectral function with branching ratio into final state:

\[\frac{d\sigma}{dm} \sim A(m, p) \cdot \frac{\Gamma_{M\rightarrow X_1+X_2}}{\Gamma_{tot}} \]

e+e- spectra from photon and proton induced reactions

JLAB-CLAS: \(\gamma A \rightarrow e^+e^-X; \)
\(E_\gamma = 0.6-3.8 \) GeV
R. Nasseripour et al., PRL 99 (2007) 262302

KEK-E325: \(p(12 \text{ GeV}) A \rightarrow e^+e^-X; \)
M. Naruki et al., PRL 96 (2006) 092301

\[m_\rho(\rho) = m_0 \cdot (1 - 0.092 \frac{\rho}{\rho_0}) \]

\(\rho \) slightly broadened; no mass shift

\(\rho \) shifted in mass; no broadening!!

(b) Cu

with mass modification
e^+e^- spectra from photon and proton induced reactions

JLAB-CLAS: γA → e^+e^-X;
Eγ = 0.6-3.8 GeV

R. Nasseripour et al., PRL 99 (2007) 262302

KEK-E325: p(12 GeV) A → e^+e^-X;

M. Naruki et al., PRL96 (2006) 092301

ρ slightly broadened; no mass shift

ρ shifted in mass; no broadening !!

\[m_\rho = m_0 \cdot (1 - 0.092 \frac{\rho}{\rho_0}) \]

no consistent picture !! needs further experimental clarification !! ⇒ JPARC-E16
dilepton invariant mass spectra

HADES@GSI
p + p, Nb 3.5 GeV

$p_{ee} > 800$ MeV/c

shape of m_{ee} spectrum in $p+Nb$ identical to reference spectrum in $p+p$
dilepton invariant mass spectra

HADES@GSI p + p, Nb 3.5 GeV

- $p_{ee} > 800$ MeV/c
- $p_{ee} < 800$ MeV/c

- Strong e^+e^- excess yield below ω peak attributed to ρ-like channels;
- No hint for change in ω line shape;
- Strong ω absorption confirmed

Shape of m_{ee} spectrum in $p+\text{Nb}$ identical to reference spectrum in $p+p$
comparison to Gi BUU simulations

comparison to different in-medium modification scenarios

HADES data

\(p + Nb \) at 3.5 GeV

\[m_{e^+e^-} \text{ [GeV]} \]

- difficult to distinguish between different in-medium scenarios:
- difficult to disentangle \(\rho, \omega \) contributions and to extract individual in-medium properties
only small differences between the scenarios: “no medium effects” and “collisional broadening”
(treatment of bremsstrahlung using extrapolation of OBE approximation to such high energies questionable)
in \(\rho \) mass region collisional broadening scenario somewhat closer to data
$E_\gamma = 0.9 - 1.3$ GeV

$\omega \rightarrow \pi^0 \gamma$ lineshape analysis

M. Thiel
$\omega \rightarrow \pi^0 \gamma$ lineshape analysis

comparison with reference measurement on LH$_2$

no significant structure in spectral function; signal on Nb slightly broader than on C, LH$_2$
$\omega \rightarrow \pi^0 \gamma$ lineshape analysis

M. Thiel

CB@MAMI

$E_\gamma = 0.9 - 1.3$ GeV

comparison with reference measurement on LH$_2$

comparison with GiBUU calculations for different in-medium scenarios (J. Weil, U. Mosel)

no significant structure in spectral function; signal on Nb slightly broader than on C, LH$_2$

data consistent with collisional broadening; mass shift scenario less likely

PRELIMINARY
Why is the line shape measurement so insensitive to in-medium modifications of the ω meson??

- only 20-30% of the $\omega \rightarrow \pi^0 \gamma$ decays occur within the nuclear medium;
 $\tau_\omega = 22$ fm/c; $<p_\omega> \approx 600$ MeV/c; $<\beta_\gamma>\omega \approx 0.77$; $<d> = \beta_\gamma c \tau \approx 17$ fm
Why is the line shape measurement so insensitive to in-medium modifications of the ω meson??

- only 20-30% of the $\omega \to \pi^0 \gamma$ decays occur within the nuclear medium; $\tau_\omega = 22$ fm/c; $<p_\omega> \approx 600$ MeV/c; $<\beta_\gamma> \omega \approx 0.77$; $<d> = \beta_\gamma c \tau \approx 17$ fm

- a possible density dependent mass shift is smeared out due to the nuclear density profile
Why is the line shape measurement so insensitive to in-medium modifications of the ω meson??

- only 20-30% of the $\omega \rightarrow \pi^0\gamma$ decays occur within the nuclear medium; $\tau_\omega = 22$ fm/c; $<p_\omega> \approx 600$ MeV/c; $<\beta_\gamma>_{\omega} \approx 0.77$; $<d> = \beta_\gamma c \tau \approx 17$ fm

- a possible density dependent mass shift is smeared out due to the nuclear density profile

- a possible density dependent mass shift is smeared out due to the in-medium collisional broadening of the ω-signal: $\Gamma(\rho_0) \approx 130 - 150$ MeV

Why is the line shape measurement so insensitive to in-medium modifications of the ω meson??

- only 20-30% of the $\omega \rightarrow \pi^0 \gamma$ decays occur within the nuclear medium; $\tau_\omega = 22$ fm/c; $< p_\omega > \approx 600$ MeV/c; $< \beta_\gamma >_{\omega} \approx 0.77$; $< d > = \beta_\gamma c \tau \approx 17$ fm; $J. Weil, U. Mosel, V. Metag, arXiv: 1210.3074$

- a possible density dependent mass shift is smeared out due to the nuclear density profile

- a possible density dependent mass shift is smeared out due to the in-medium collisional broadening of the ω-signal: $\Gamma(\rho_0) \approx 130 - 150$ MeV

- due to π^0 absorption (π^0-FSI) $\omega \rightarrow \pi^0 \gamma$ decays in the center of the nucleus are not registered; only $\omega \rightarrow \pi^0 \gamma$ decays in the surface region can be reconstructed.
Φ meson in the nuclear medium

KEK-E325 $p(12 \text{ GeV}) A \rightarrow \Phi + X; \quad \Phi \rightarrow e^+e^-; \quad cT = 46 \text{ fm}$

R. Muto et al., PRL 98 (2007) 042501

$\beta \cdot \gamma \leq 1.25$ (slow) \quad 1.25 \leq \beta \cdot \gamma \leq 1.75$

mass shift of Φ meson in Cu for low Φ recoil momenta:

$m_\phi(\rho) = m_0 (1 - 0.034 \frac{\rho}{\rho_0})$

increase in width by factor 3.6 $\Rightarrow \Gamma_\Phi \approx 15 \text{ MeV}$
Φ meson in the nuclear medium

KEK-E325
\[p(12 \text{ GeV}) A \rightarrow \Phi + X; \quad \Phi \rightarrow e^+e^-; \quad cT = 46 \text{ fm} \]

R. Muto et al., PRL 98 (2007) 042501

\[\beta \cdot \gamma \leq 1.25 \text{ (slow)} \quad 1.25 \leq \beta \cdot \gamma \leq 1.75 \]

mass shift of Φ meson in Cu for low Φ recoil momenta:

\[m_\Phi(\rho) = m_0(1 - 0.034 \frac{\rho}{\rho_0}) \]

increase in width by factor 3.6 ⇒ \[\Gamma_\Phi \approx 15 \text{ MeV} \]

to be confirmed in JPARC-E16, S. Yokkaichi et al.
mesons with lowered in-medium mass have to leave the nucleus with on-shell mass; mass has to be generated at the expense of the kinetic energy of the meson

⇒ shift of meson momentum distributions towards smaller momenta

GiBUU calculations (J. Weil et al., PLB (2013)) in comparison to CB@MAMI data (M. Thiel et al.) for 12C, 92Nb (γ,ω); $E_\gamma = 900 - 1300$ MeV

scenarios with large (-16%) mass shift not supported by data
Search for meson-nucleus bound states
Population of ω-mesic states in photo induced reactions

Forward going proton takes up momentum of incoming photon, leaving meson at rest;
⇒ captured by nucleus in case of an attractive interaction

E. Marco and W. Weise, PLB 502 (2001) 59

Two ways of measuring excitation energy of mesic nucleus:
1.) missing mass spectrometry: measure spectrum of forward going proton
2.) measure kinetic energy of decay products of mesic state
theoretical predictions for $\gamma^{12}\text{C} \rightarrow \omega \otimes^{11}\text{B} + p$

formation cross section

no structures due to large ω in-medium width
peak in kinetic energy distribution correlated with depth of real potential
formation cross section

no structures due to large \(\omega \) in-medium width

peak in kinetic energy distribution correlated with depth of real potential

\(\omega \) absorption and \(\pi^0 \gamma \) decay + escape probability from GiBUU
theoretical predictions for $\gamma^{12}\text{C}\to\omega\otimes^{11}\text{B} + p$

formation cross section

no structures due to large ω in-medium width
peak in kinetic energy distribution correlated with depth of real potential

expected $\pi^0\gamma$ cross section

ω absorption and $\pi^0\gamma$ decay + escape probability from GiBUU
theoretical predictions for $\gamma^{12}\text{C} \rightarrow \omega \otimes ^{11}\text{B} + p$

formation cross section

no structures due to large ω in-medium width

peak in kinetic energy distribution correlated with depth of real potential

peak in kinetic energy distribution for different potential depth

expected $\pi^0\gamma$ cross section

ω absorption and $\pi^0\gamma$ decay + escape probability from GiBUU

π̄γ decay
S. Friedrich, CBELSA/TAPS collaboration
photo production of ω mesons on LH$_2$, C
in coincidence with forward going proton
$E_\gamma = 1250 - 3100$ MeV

kinetic energy distributions
of $\pi^0 \gamma$ pairs
peak at almost the same energy
for free proton and carbon:
$E_{\text{peak}} \approx 60$ MeV
⇒ ω-nucleus potential
neither strongly attractive
nor strongly repulsive
S. Friedrich, CBELSA/TAPS collaboration
photo production of ω mesons on LH$_2$, C
in coincidence with forward going proton
$E_Y = 1250 - 3100$ MeV

ω-nucleus potential
neither strongly attractive
nor strongly repulsive

comparison with experiment
data consistent with shallow or even zero potential

V$_0 \approx$ -35\pm35 MeV

peak at 61\pm3 MeV
formation cross sections: GiBUU ↔ Nagahiro et al.

good agreement between quantum mechanical and transport calculation

within model dependencies:

\[V_0 \approx (-35 \pm 35) \text{ MeV} \]
• observables for extracting in-medium properties of mesons: determination of real and imaginary part of the meson-nucleus potential
Summary

- observables for extracting in-medium properties of mesons: determination of real and imaginary part of the meson-nucleus potential

- imaginary potential:
 transparency ratio: (CBELSA/TAPS, ANKE, CLAS, LEPS)
 in-medium broadening of ω, η', Φ mesons;

<table>
<thead>
<tr>
<th></th>
<th>$\Gamma(\rho_0)$ [MeV]</th>
<th>$\langle p \rangle$ [GeV/c]</th>
<th>σ_{inel} [mb]</th>
<th>$W(\rho_0)$ [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>130-150</td>
<td>1,1</td>
<td>≈ 60</td>
<td>-(65-75)</td>
</tr>
<tr>
<td>η'</td>
<td>15-25</td>
<td>1,1</td>
<td>3-10</td>
<td>-(7-13)</td>
</tr>
<tr>
<td>Φ</td>
<td>30-60</td>
<td>0.6-1.4</td>
<td>14-21</td>
<td>-(15-30)</td>
</tr>
</tbody>
</table>
Summary

- observables for extracting in-medium properties of mesons: determination of real and imaginary part of the meson-nucleus potential

- imaginary potential:
 - transparency ratio: (CBELSA/TAPS, ANKE, CLAS, LEPS)
 - in-medium broadening of ω, η', Φ mesons;

<table>
<thead>
<tr>
<th></th>
<th>$\Gamma(\rho_0)$ [MeV]</th>
<th>$<p>$ [GeV/c]</th>
<th>σ_{inel} [mb]</th>
<th>$W(\rho_0)$ [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>130-150</td>
<td>1,1</td>
<td>≈ 60</td>
<td>$(65-75)$</td>
</tr>
<tr>
<td>η'</td>
<td>15-25</td>
<td>1,1</td>
<td>3-10</td>
<td>$(7-13)$</td>
</tr>
<tr>
<td>Φ</td>
<td>30-60</td>
<td>0.6-1.4</td>
<td>14-21</td>
<td>$(15-30)$</td>
</tr>
</tbody>
</table>

- real potential:
 - ρ,ω-line shape analysis: (KEK, JLAB, CB@MAMI, HADES)
 - apart from KEK-E325 no evidence for structures or mass shifts;
 - limited sensitivity due to small fraction of in-medium decays, in-medium broadening and density dependence of mass shifted signal; π-FSI for $\omega \rightarrow \pi^0\gamma$
 - meson-nucleus bound states: (GSI, RIKEN, CBELSA/TAPS, JPARC)
 - $V_\omega(\rho=\rho_0) \approx (-35\pm35)$ MeV (preliminary !);
 - search for η' mesic states in preparation
Observables for extracting in-medium properties of mesons: determination of real and imaginary part of the meson-nucleus potential

Imaginary potential:
- Transparency ratio: (CBELSA/TAPS, ANKE, CLAS, LEPS)
- In-medium broadening of ω, η’, Φ mesons;

<table>
<thead>
<tr>
<th></th>
<th>Γ(ρ_0) [MeV]</th>
<th>⟨p⟩ [GeV/c]</th>
<th>σ_{inel}[mb]</th>
<th>W(ρ_0) [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>130-150</td>
<td>1,1</td>
<td>≈ 60</td>
<td>-(65-75)</td>
</tr>
<tr>
<td>η’</td>
<td>15-25</td>
<td>1,1</td>
<td>3-10</td>
<td>-(7-13)</td>
</tr>
<tr>
<td>Φ</td>
<td>30-60</td>
<td>0.6-1.4</td>
<td>14-21</td>
<td>-(15-30)</td>
</tr>
</tbody>
</table>

Real potential:
- ρ,ω-line shape analysis: (KEK, JLAB, CB@MAMI, HADES)
 - Apart from KEK-E325 no evidence for structures or mass shifts;
 - Limited sensitivity due to small fraction of in-medium decays, in-medium broadening and density dependence of mass shifted signal; \(\pi \) FSI for \(\omega \to \pi^0 \gamma \)
- Meson-nucleus bound states: (GSI, RIKEN, CBELSA/TAPS, JPARC)
 - \(V_\omega(\rho=\rho_0) \approx (-35\pm35) \) MeV (preliminary !);
 - Search for η’ mesic states in preparation

Meson spectral functions do change in the nuclear environment!!