Three-body forces in two-neutron decay experiments: 26O

Artemis Spyrou

MICHIGAN STATE UNIVERSITY

Workshop “Three-body forces: from matter to nuclei”, ECT*, Trento 2014
Overview

* Motivation
* Neutron-rich oxygen isotopes

* Experimental
 ★ MoNA/Sweeper setup
 ★ 2n decay of ^{26}O

* ^{26}O decay energy
* ^{26}O half-life

* 3NF status and needs
Neutron Dripline

Edge of nuclear landscape

Neutron Dripline

- Neutron - unbound states
 - Nuclear structure/Shell evolution/3NF
 - Halo Structures
 - 2n Decay (n-n correlations)
Neutron Dripline

Oxygen: 8 protons + 16 neutrons
Fluorine: 9 protons + ≥ 22 neutrons

Why?
Spectroscopy of n-rich oxygen isotopes

Z. Elekes et al., PRL 98 (2007) 102502
A. Schiller et al., PRL 99 (2007) 112501
C.R. Hoffman et al., PLB 672 (2009) 17
C.R. Hoffman et al., PRC83 (2011) 031303
K. Tshoo et al., PRL 109 (2012) 022501
C.R. Hoffman et al., PRL 100 (2008) 152501
C. Caesar et al., arXiv:1209.0156
26O: Bound or Unbound?

- 26O largely unconstrained
- Theoretical predictions of the S(2n) vary from -5 to +5 MeV
- Experimental data needed for comparing to theory
26O experiment

- **Production target**: 1316 mg/cm²

- **Al wedge**

- **K1200**
 - 48Ca
 - 140 MeV/u

- **K500**

- **A1900 fragment separator**

- **Final focus**

- **Coupled Cyclotrons**

- **Be**
26O experiment
Previous MoNA Experiment: Hoffman et al. PRL 2008
Measured g.s. of 25O @ 770 keV

Current work: Presence of low-energy neutrons

Dashed-lines CSM predictions
Volya & Zelevinsky PRL 2005
Ground state of ^{26}O

Cross Talk: Single neutron interacting twice (false 2n signal).

26\text{O} unbound by < 200 keV

Causality cuts:
- $\Delta v = 7$ cm/ns
- $\Delta d = 25$ cm
^{26}O: Bound or Unbound?

- ^{26}O unbound by <200 keV
- ^{26}O unbound by <50 keV

C. Caesar, PRC 88 (2013) 034313
26O and Three-body forces

- Otsuka et al. PRL. 105, 032501 (2010).
- Cipollone et al. PRL 111, 062501 (2013).
- IM-SRG In-medium similarity renormalization group
- C. Caesar, PRC 88 (2013) 034313
- Coupled-cluster

Shell model

Self-consistent Green’s function

^{26}O and Three-body forces

C. Caesar, PRC 88 (2013) 034313

Otsuka et al. PRL. 105, 032501 (2010).

Cipollone et al. PRL 111, 062501 (2013).

Self-consistent Green’s function

Shell model

In-medium similarity renormalization group

Coupled-cluster
2n radioactivity

- Pfutzner et al. (2012): $T_{1/2} > 10^{-14}$ s (10 fs)
 - Emission of particle from atomic nucleus
 - K-shell vacancy half-life of carbon atom 2×10^{-14} s
 - Width (G) is 0.03 eV, which is about room temp
- Cerny & Hardy (1977): $T_{1/2} > 10^{-12}$ s (1 ps)
- IUPAC, discovery of element: $T_{1/2} > 10^{-14}$ s (10 fs)
 - Around the time for nucleus to acquire outer electrons

Grigorenko et al. PRC 84, 021303(R) (2011)
R³B-LAND results

Lifetime limit: $t < 5.7$ ns

2σ limit = 11.8 ns

2σ limit

$E_{\text{rel}} < 120$ keV

Half-life measurement

increased lifetime = reduced velocity neutrons

\[V_{\text{rel}} = V_n - V_{\text{frag}} \]

Increased lifetime = reduced velocity neutrons

Lifetime: \(T_{1/2} = 4.5^{+1.1}_{-1.5} \) (stat.) \(\pm 3 \) (syst) ps

82% C.L. for possible finite two-neutron radioactivity lifetime

Unbinned maximum likelihood technique
New Lifetime calculations

Realistic energy limit
$E_T < 1$ keV

Improve E_{decay} constraints

$^{26}_{8}\text{O}_{18}$ true $2n$ decay

L.V. Grigorenko, I.G. Mukha, and M.V. Zhukov, PRL (2013)
Status + Needs

Experiment
1. Improve the 26O constraints on decay energy and half-life
2. Measure 28O!!!!

Theory
1. Optimized 2N vs 3N
2. Reliable 28O predictions
3. 26O – width/half-life
Thanks

Thomas Baumann
Daniel Bazin
Michael Jones
Zach Kohley
Anthony Kuchera
Jenna Smith
Michael Thoennessen

Theory
Alex Brown
Jeff Tostevin
Alexander Volya

Hope College:
E. Lunderberg
P. A. DeYoung