ρ-meson broadening in QCD at finite temperature

Alejandro Ayala
Instituto de Ciencias Nucleares
Universidad Nacional Autónoma de México

In collaboration with C. Domínguez, M. Loewe and Y. Zhang

Electromagnetic Probes of Strongly Interacting Matter
ECT* Trento, May 20-24, 2013
Interactions with matter at finite T modify particle properties.

Particles with short lifetimes, comparable to plasma lifetime like Σ, K^*, ρ, are useful probes; they form, decay and scatter both within the QGP and the hadronic phases.

These phenomena are linked to hadronization and are therefore of non-perturbative nature.
Heavy-Ion Collisions at High Energy
Heavy-Ion Collisions at High Energy

Nuclear matter is compressed and heated in high energy nuclear reactions.

Fundamental degrees of freedom are liberated.
Collision energies

Relativistic Heavy Ion Collider

AGS: $\sqrt{s_{NN}} = 4.8$ GeV

SPS: $\sqrt{s_{NN}} = 17$ GeV

RHIC: pp, dA, AA
$\sqrt{s_{NN}}$: 20 to 200 GeV

LHC $\sqrt{s_{NN}} = 5.6$ TeV
QCD Phases

~197

~ 10 times normal nuclear density
Mass vs Width Change

SPS ~ 1995
Dileptons in Low Mass Region NA60 (2009)

Width Growth NA60

PHENIX low momentum pairs
Analysis Tools

Correlator of vector currents

\[\Pi_{\mu\nu}(q^2) = i \int d^4x \, e^{iq \cdot x} \langle 0 | T(V_{\mu}(x)V_{\nu}(0)) | 0 \rangle \]

\[= -g_{\mu\nu} \, \Pi_1(q^2) + q_\mu q_\nu \, \Pi_0(q^2) \]
Analysis Tools

Correlator of vector currents

\[\Pi_{\mu\nu}(q^2) = i \int d^4x \ e^{iq \cdot x} \langle 0 | T(V_\mu(x) V_\nu(0)) | 0 \rangle \]

\[= -g_{\mu\nu} \Pi_1(q^2) + q_\mu q_\nu \Pi_0(q^2) \]
Analysis Tools

Correlator of vector currents

\[\Pi_{\mu\nu}(q^2) = i \int d^4x \, e^{iq \cdot x} \langle 0 | T(V_{\mu}(x) V_{\nu}(0)) | 0 \rangle \]

\[= -g_{\mu\nu} \Pi_1(q^2) + q_{\mu} q_{\nu} \Pi_0(q^2) \]

Take one of these structures free from singularities and apply Cauchy's theorem in complex energy plane
Complex Energy Plane
Since integration path does not enclose any singularities

\[\frac{1}{\pi} \int_{0}^{s_0} ds \ s^{N-1} \text{Im}\Pi(s) \bigg|_{QCD} = -\frac{1}{2\pi i} \oint_{C(|s_0|)} ds \ s^{N-1} \Pi(s) \bigg|_{QCD} \]
Since integration path does not enclose any singularities

\[
\frac{1}{\pi} \int_0^{s_0} ds \ s^{N-1} \text{Im}\Pi(s) = -\frac{1}{2\pi i} \oint_{C(|s_0|)} ds \ s^{N-1} \Pi(s) \bigg|_{\text{QCD}}
\]
Since integration path does not enclose any singularities

Contains hadron degrees of freedom close to the positive real axis

\[
\frac{1}{\pi} \int_0^{s_0} ds \ s^{N-1} \text{Im}\Pi(s) = -\frac{1}{2\pi i} \oint_{C(|s_0|)} ds \ s^{N-1} \Pi(s) \bigg|_{\text{QCD}}
\]
Since integration path does not enclose any singularities.

Contains hadron degrees of freedom close to the positive real axis.

\[
\frac{1}{\pi} \int_{0}^{s_0} ds \ s^{N-1} \ \text{Im}\Pi(s) = -\frac{1}{2\pi i} \oint_{C(|s_0|)} ds \ s^{N-1} \Pi(s) \bigg|_{\text{QCD}}
\]

This object is related to the spectral density.
Since integration path does not enclose any singularities

Contains hadron degrees of freedom close to the positive real axis

\[\frac{1}{\pi} \int_0^{s_0} ds \; s^{N-1} \text{Im} \Pi(s) = -\frac{1}{2\pi i} \oint_{C(|s_0|)} ds \; s^{N-1} \Pi(s) \bigg|_{\text{QCD}} \]

This object is related to the spectral density
Since integration path does not enclose any singularities

Contains hadron degrees of freedom close to the positive real axis

QCD (pert. and non-pert) is valid on the circle

\[
\frac{1}{\pi} \int_0^{s_0} ds \ s^{N-1} \ \text{Im} \Pi(s) = -\frac{1}{2\pi i} \int_{C(|s_0|)} ds \ s^{N-1} \Pi(s) \bigg|_{\text{QCD}}
\]

This object is related to the spectral density
Quark-Hadron Duality

Operator Product Expansion

$$\Pi(Q^2) \bigg|_{QCD} = \sum_{M=0}^{\infty} \frac{C_{2M+2}}{Q^{2M+2}} \langle O_{2M+2} \rangle$$
$$\frac{1}{2\pi i} \sum_{M=1}^{N} C_{2M+2} \langle O_{2M+2} \rangle \int_{C(|s_0|)} ds \frac{s^{N-1}}{s^{M+1}}$$

$$= - \frac{1}{2\pi i} \sum_{M=1}^{N} C_{2M+2} \langle O_{2M+2} \rangle (2\pi i) \delta_{M,N-1}$$

$$= - C_{2N} \langle O_{2N} \rangle.$$
Non-Perturbative Part: OPE

\[
\frac{1}{2\pi i} \sum_{M=1}^{\infty} C_{2M+2} \langle O_{2M+2} \rangle \int_{C(|s_0|)} ds \frac{s^{N-1}}{s^{M+1}}
\]

\[
= - \frac{1}{2\pi i} \sum_{M=1}^{\infty} C_{2M+2} \langle O_{2M+2} \rangle (2\pi i) \delta_{M,N-1}
\]

\[
= - C_{2N} \langle O_{2N} \rangle.
\]

N=0,1,2...
Non-Perturbative Part: OPE

\[\frac{1}{2\pi i} \sum_{M=1} C_{2M+2} \langle O_{2M+2} \rangle \int_{C(|s_0|)} ds \frac{s^{N-1}}{s^{M+1}} \]

\[= - \frac{1}{2\pi i} \sum_{M=1} C_{2M+2} \langle O_{2M+2} \rangle (2\pi i) \delta_{M,N-1} \]

\[= - C_{2N} \langle O_{2N} \rangle. \]

N=0,1,2,...
Leading condensates

dimension $d = 4$ gluon condensate

$$C_4 \langle \hat{O}_4 \rangle = \frac{\pi}{3} \langle \alpha_s G^2 \rangle$$

dimension $d = 6$ four-quark condensate

$$C_6 \langle \hat{O}_6 \rangle = -8\pi^3 \alpha_s \left[\langle (\bar{q}\gamma_\mu \gamma_5 \lambda^a q)^2 \rangle + \frac{2}{9} \langle (\bar{q}\gamma_\mu \lambda^a q)^2 \rangle \right]$$

No invariant operators of $d=2$ in QCD, it is standard practice to assume $C_2 \langle O_2 \rangle = 0$
For increasing T and/or μ_B the energy threshold for the continuum goes to 0.
Finite T

Two contributions:

1) Annihilation channel (available also at T=0)
2) Dispersion channel (Landau damping)
At finite T, spectral function has support both at space-like and time-like momenta.
Sum Rules

\[
(-1)^{N+1} C_{2N} \langle O_{2N} \rangle = \frac{1}{\pi} \int_0^{s_0} dss^{N-1} \text{Im} \Pi^{\text{HAD}}(s)
- \frac{1}{\pi} \int_0^{s_0} dss^{N-1} \text{Im} \Pi^{\text{PQCD}}(s)
\]

\[
\Pi^{\text{HAD}}(q^2) = \frac{m_{\rho}^2 f_{\rho}^{-2}}{(m_{\rho}^2 - q^2) - im_{\rho} \Gamma_{\rho}} + \text{pion loop from vector current coupled to pions}
\]

\[
\text{Im} \Pi^{\text{HAD}}(q^2) = \frac{m_{\rho}^3 f_{\rho} \Gamma_{\rho}/\pi}{(m_{\rho}^2 - q^2)^2 + m_{\rho}^2 \Gamma_{\rho}^2} + \]

Explicit Sum Rules, N=1
Explicit Sum Rules, $N=1$

\[N = 1: \]
\[0 = 8\pi m^2 \rho f^2 \rho \left[\arccot \left(\frac{\Gamma_{\rho}}{m_{\rho}} \right) - \arccot \left(\frac{\Gamma_{\rho} m_{\rho}}{m^2_{\rho} - s_0} \right) \right] - s_0 \]
\[- \frac{4\pi^2 T^2}{9} + 2 \int_0^{s_0} ds \eta_F(\sqrt{s}/2) \]
Explicit Sum Rules, N=2
Explicit Sum Rules, N=2

\[N = 2 : \]
\[-C_4 \langle O_4 \rangle = 8\pi m_\rho^3 f_\rho^2 \Gamma_\rho \]
\[\times \left[\left(\frac{m_\rho}{\Gamma_\rho} \right) \left(\text{arccot} \left(\frac{\Gamma_\rho}{m_\rho} \right) - \text{arccot} \left(\frac{\Gamma_\rho m_\rho}{m_\rho^2 - s_0} \right) \right) \right. \]
\[+ \left. \frac{1}{2} \ln \left[\frac{\Gamma_\rho^2 m_\rho^2 + (m_\rho^2 - s_0)^2}{m_\rho^2 (m_\rho^2 + \Gamma_\rho^2)} \right] \right] - \frac{s_0^2}{2} \]
\[+ 2 \int_0^{s_0} ds \text{sn}_F (\sqrt{s}/2) \]
Explicit Sum Rules, N = 3
Explicit Sum Rules, $N=3$

\[
N = 3 : \\
-C_6^3 O_6 = 8\pi m_\rho^3 f_\rho^2 \Gamma_\rho \\
\times \left[\left(\frac{m_\rho}{\Gamma_\rho} \right) \left(m_\rho^2 - \Gamma_\rho^2 \right) \left(\arccot \left(\frac{\Gamma_\rho}{m_\rho} \right) - \arccot \left(\frac{\Gamma_\rho m_\rho}{m_\rho^2 - s_0} \right) \right) + s_0 \right] \\
+ m_\rho^2 \ln \left[\frac{\Gamma_\rho^2 m_\rho^2 + (m_\rho^2 - s_0)^2}{m_\rho^2 (m_\rho^2 + \Gamma_\rho^2)} \right] - \frac{s_0^3}{3} \\
+ 2 \int_0^{s_0} ds n_F(\sqrt{s}/2)
\]
Need inputs

$C_2\langle O_2 \rangle, \ C_4\langle O_4 \rangle, \ C_6\langle O_6 \rangle, \ s_0, \ f_\rho, \ m_\rho, \ \Gamma_\rho$
Need inputs

Inputs: Finite temperature behavior of

\[C_2\langle O_2 \rangle, \ C_4\langle O_4 \rangle, \ C_6\langle O_6 \rangle, \ s_0, \ f_\rho, \ m_\rho, \ \Gamma_\rho \]
Need inputs

Inputs: Finite temperature behavior of

\[C_2 \langle O_2 \rangle, \ C_4 \langle O_4 \rangle, \ C_6 \langle O_6 \rangle, \ s_0, \ f_\rho, \ m_\rho, \ \Gamma_\rho \]
Need inputs

Inputs: Finite temperature behavior of

\[C_2 \langle O_2 \rangle, \ C_4 \langle O_4 \rangle, \ C_6 \langle O_6 \rangle, \ s_0, \ f_\rho, \ m_\rho, \ \Gamma_\rho \]

\[C_2 \langle O_2 \rangle \sim 0 \]
Inputs: Finite temperature behavior of

\[C_2\langle O_2 \rangle, \ C_4\langle O_4 \rangle, \ C_6\langle O_6 \rangle, \ s_0, \ f_\rho, \ m_\rho, \ \Gamma_\rho \]

\[C_2\langle O_2 \rangle \sim 0 \]

Three equations, six unknowns. Need a guide to solve the problem
$T=0$

This gives

\[f_\rho = 5, \ m_\rho = 0.776 \text{ GeV}, \ \Gamma_\rho = 0.145 \text{ GeV} \]

\[C_4 \langle O_4 \rangle = 0.12 \text{ GeV}^4, \]
\[C_6 \langle O_6 \rangle = -0.39 \text{ GeV}^6, \]
\[s_0 = 1.44 \text{ GeV}^2 \]
Results: $C_4 <O_4>$ at Finite T

\[
C_4 \langle \hat{O}_4 \rangle(T) / C_4 \langle \hat{O}_4 \rangle(0) = 1 - 1.65 (T/T_c)^{8.735} + 0.04967 (T/T_c)^{0.7211}
\]

$T_c = 197$ MeV
Results: $C_6\langle O_6 \rangle$ at Finite T

\[C_6\langle \hat{O}_6 \rangle(T) = C_6\langle \hat{O}_6 \rangle(0) \left[1 - \left(\frac{T}{T_q^*} \right)^b \right] \]

\[b = 8 \]

\[T_q^* = 187 \text{ MeV} \]
Results: s_0 at Finite T

\[s_0(T)/s_0(0) = 1 - 0.5667(T/T_c)^{11.38} - 4.347(T/T_c)^{68.41} \]

$T_c = 197$ MeV
Results: leptonic decay constant at Finite T

\[\frac{f_\rho(T)}{f_\rho(0)} = 1 - 0.3901(T/T_c)^{10.75} + 0.04155(T/T_c)^{1.269} \]

$T_c = 197$ MeV
Results: rho mass at Finite T

\[M_\rho(T) = M_\rho(0)[1 - \left(\frac{T}{T^*_M}\right)^c] \]

\[c = 10 \]

\[T^*_M = 222 \text{ MeV} \]
Results: rho width at Finite T

\[\Gamma_\rho(T) = \frac{\Gamma_\rho(0)}{1 - (T/T_c)^a} \]

\[a = 3 \]

\[T_c = 197 \text{ MeV} \]
Conclusions

Solution constrained by physical expectations as well as available lattice input.

Thermal width of rho meson shows a dramatic increase, roughly a factor of 20 near T_c. However rho mass decreases only slightly.

Next step: Explore consequences for dimuon rate in heavy ions.