Thermal Photon Flow:
Some details and a new perspective

Sarah Campbell
ECT* Workshop
“Electromagnetic probes of Strongly Interacting Matter”
May 23, 2012 -- Trento, Italy
Outline

• Some details about the PHENIX thermal photon measurements
• No theory comparisons
 – Gabor discussed this in this morning’s talk
• New idea...
Fit m_{ee} at $p_T > 1$ to find r_γ

$$f(m_{ee}) = (1 - r_\gamma)f_c(m_{ee}) + r_\gamma f_{dir}(m_{ee})$$

$$r_\gamma = R_\gamma = \frac{\text{direct } \gamma}{\text{inclusive } \gamma}$$

- Fit for m_{ee} in 0.15-0.3 GeV/c2 in p_T slices

No excess in d+Au

Excess in Cu+Cu

Excess in Au+Au

Sarah Campbell -- ECT* Workshop Electromagnetic Probes of Strongly Interacting Matter -- May 23, 2013
Fit m_{ee} at $p_T > 1$ to find r_γ

$$f(m_{ee}) = (1 - r_\gamma)f_c(m_{ee}) + r_\gamma f_{dir}(m_{ee})$$

$$r_\gamma = R_\gamma = \frac{direct \gamma}{inclusive \gamma}$$

- Fit for m_{ee} in 0.15-0.3 GeV/c2 in p_T slices

No excess in d+Au

Excess in Cu+Cu

$r = 0.189 \pm 0.0213$

χ^2/NDF = 12.2/6

PRL 104 132301 (2010)
Direct photon p_T spectra

$$dN_{\text{real dir. } \gamma} \propto r_{\gamma} dN_{\text{incl. virtual } \gamma}$$

- Additional thermal yield
 - $T_{\text{ave}} = \text{inverse slope of expo.}$

$T_{\text{ave}} = 233 \pm 14 \pm 19$ MeV

$T_{\text{ave}} = 221 \pm 19 \pm 19$ MeV

$T_{\text{ave}} = 217 \pm 18 \pm 16$ MeV

NLO pQCD

$T_{\text{init}} \sim 300 \text{ to } 600 \text{ MeV}$

$\tau_0 \sim 0.15 - 0.5 \text{ fm/c}$

Dashed lines T_{AA}-scaled p+p
Solid lines T_{AA}-scaled p+p + expo
PRL 104 132301 (2010)
Measuring $v_2^{\gamma,\text{dir}}$

Calculated with a cocktail assuming KE$_T$ and m$_T$ scaling and measured $v_2^{\pi^0}$

MB Au+Au

Sarah Campbell -- ECT* Workshop
Electromagnetic Probes of Strongly Interacting Matter -- May 23, 2013

PRL 109 122302 (2012)
Thermal photon flow

- Low p_T, v_2 large
 - p_T spectra \rightarrow produced early in collision
 - No time to build up the pressure gradients for large partonic flow

- High p_T, $v_2 \sim 0$
 - Consistent with hard scattering
“Thermal photon v_2 is as large at the pion v_2”
Hadronic flow

Bulk expansion

Recombination

n_q scaling

Jets

n_q scaling

$v_2 \times 1.6$ for 0-20%

v_2 / n_q

v_2 / n_q

$p_T (GeV/c)$

$KE_T / n_q (GeV)$

0.05

0.10

0.15

0.20

0.25

0.30

0.00

0.02

0.04

0.06

0.08

0.10

Sarah Campbell -- ECT* Workshop Electromagnetic Probes of Strongly Interacting Matter -- May 23, 2013
Simple Coalescence

- Quarks: \(\frac{dN}{d\varphi} \sim 1 + 2\nu_{2,q}(p_T) \cos(2\varphi) \)
- Mesons: \(\nu_2(p_T) = 2\nu_{2,q}(p_T/2) \)
- Baryons: \(\nu_2(p_T) = 3\nu_{2,q}(p_T/3) \)
- Assumes co-moving quarks of same momentum
 - \(p_{T,M} \rightarrow 2p_{T,q} \) \(p_{T,B} \rightarrow 3p_{T,q} \)
 - Momentum conservation maintained by mean field interaction
- Quarks close in phase space
- Why not increase q-qbar annihilation cross-section?
 - Produce more thermal photons during crossover
If we assume $n_{q, \gamma} = 2$

$v_2 * 1.6$ for 0-20%

$20-40\%$

PRC 85 064914 (2012)
PRL 109 122302 (2012)
Compare n_q-scaled v_2 for γ and hadrons

- $\chi^2 = \sum_{c,h,p_T/nq} \left(v_{2,\gamma}/n_{q,\gamma} - v_{2,h}/n_{q,h} \right)^2 / (\sigma_{\gamma}^2 + \sigma_h^2)$
 - Sum over centrality, hadron for each γ data point in p_T/n_q
 - $\sigma^2 = \sigma_{\text{sys}}^2 + \sigma_{\text{stat}}^2$

- Match $v_{2,\gamma}$ and $v_{2,h}$ points so $p_{T,\gamma}/n_{q,\gamma} \sim p_{T,h}/n_{q,h}$
 - Need to be within 0.1 to be a match

- NDF = # points – 1 parameter $\rightarrow n_{q,\gamma}$
 - As changes $n_{q,\gamma}$, NDF changes

- Find $n_{q,\gamma}$ at minimum χ^2/NDF
 - $n_{q,\gamma}$ error range from χ^2/NDF + 1

- Alternate comparison: use $K E_T/n_q$ to match
Example $n_{q,\gamma}=2$ with p_T/n_q match

- $\chi^2 = 16.739$
- NDF = 39
- $\chi^2 / \text{NDF} = 0.429$
Example $n_{q,\gamma}=3$ with p_T/n_q match

- $\chi^2 = 226.384$
- NDF = 51
- $\chi^2 / \text{NDF} = 4.439$

- 0-20%
- 20-40%

- γ
- π
- γ
- K
- γ
- p
χ^2/NDF space in $n_{q,\gamma}$

$n_{q,\gamma}$ ranges:

1.19 - 2.38

1.17 - 2.34

p_T/n_q and KE_T/n_q are consistent

$n_{q,\gamma}$ minima: 1.79, 1.82
Limit to regions where hadrons n_q-scale

• Upper limit:
 – $KE_T/n_q < 1$
 for 20-40%
 – $p_T/n_q < 1.3$
 for 20-40%

• Lower Limit:
 – $KE_T/n_q > 0.6$
 – $p_T/n_q > 0.6$

Sarah Campbell -- ECT* Workshop
Electromagnetic Probes of Strongly Interacting Matter -- May 23, 2013
χ²/NDF space with limits

<table>
<thead>
<tr>
<th>p_T/n_q range</th>
<th>Min. n_{q,γ}</th>
<th>Range of n_{q,γ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole range</td>
<td>1.82</td>
<td>1.17-2.34</td>
</tr>
<tr>
<td>Upper limit</td>
<td>2.06</td>
<td>1.07-2.70</td>
</tr>
<tr>
<td>Upper & lower limit</td>
<td>1.82</td>
<td>1.06-2.66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KE_T/n_q range</th>
<th>Min. n_{q,γ}</th>
<th>Range of n_{q,γ}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole range</td>
<td>1.79</td>
<td>1.19-2.38</td>
</tr>
<tr>
<td>Upper limit</td>
<td>1.79</td>
<td>1.12-2.68</td>
</tr>
<tr>
<td>Upper & lower limit</td>
<td>1.79</td>
<td>1.12-2.69</td>
</tr>
</tbody>
</table>
What does $n_{q,\gamma} = 2$ mean?

- Suggests photon production from q-\bar{q} at the cross-over?
 - Increase in q-\bar{q} cross-section due to a coalescence-like effect?

- Originally, I thought:
 - $n_{q,\gamma} = 2 \rightarrow q$-$\bar{q}$ annihilation
 - $n_{q,\gamma} = 4 \rightarrow$ meson-meson interactions
 - Only true if mesons are co-moving and at same momentum

- Looks like γ & p drop together
 - Due to increase in hard processes/jet contribution?

How is this included in theoretical models?
Next step: Simple Monte Carlo

1st quark:

1.) Randomly pick η from a flat distribution

2.) Randomly pick p_T

3.) Calculate v_2 from p_T

4.) Randomly pick φ

$Ae^{-1/T}$

\[N(1 + 2v_2\cos(2\varphi)) \]

2nd, 3rd quarks:

5.) Assume at the same φ, η as 1st quark

6.) Randomly pick p_T from conditional prob. distrib.

\rightarrow restrict to +/- δp_T around 1st quark’s p_T

Make pairs:

7.) For pion and proton: conserve p, E or KE

- Parameters: $T, \gamma, \mu, \beta, A, \delta p_T$
Backup
Photon sources

- High p_T
 - hard processes $\rightarrow v_2 = 0$
 - Frag $\rightarrow v_2 > 0$
 - Jet conv, Brems $\rightarrow v_2 < 0$

- Low p_T
 - Thermal $\rightarrow v_2 > 0$
 - q-$q\bar{q}$ annihilation in QGP
 - Hadron annihilation

$n_q = 2$
Photons from dielectrons

- Virtual photons produce e⁺e⁻ pairs
 - \(m_{ee} << p_T \rightarrow p_T > 1, m_{ee} < 0.3 \)
 - \(m_{ee} > 0.15 \rightarrow \) avoid large \(\pi^0 \) backgrounds
- Thermal photon production
 \[
 \frac{d^2N_{ee}}{dM^2} = \frac{\alpha L(M)}{3\pi M^2} S(M, q) dN_{\gamma}
 \]
 - As \(m_{ee}/p_T \rightarrow 0, \) then \(L(m_{ee}) \rightarrow 1, S(m_{ee}) \rightarrow 1 \)

\[
\frac{d^2N_{ee}}{dm_{ee}dp_T} \approx \frac{2\alpha}{3\pi} \frac{1}{m_{ee}} \frac{dN_{\gamma}}{dp_T}
\]

- Thermal photon component, \(f_{\text{dir}} \propto 1/m_{ee} \)
 - Filter by acceptance, smear by resolution
Au+Au low p_T photons

- External conversion method
- Photons convert in back of HBD
 - Off-vertex decay ($r_{\text{conv}} \sim 60$ cm) π^0
- Apparent mass from mis-reconstructed momentum
 - In PHENIX 2007 data, collision vertex assumed
 - $m_{ee} \propto r_{\text{conv}}$
- R_γ method
 - Measure π^0 by tagging inclusive π^0 photons

$R_\gamma = \frac{N_{\gamma^\text{incl}}}{N_{\gamma^\text{inv}}}^{2007}$

2007 Run 7 Data, $|\eta|<0.35$

Min. Bias Centrality

\bullet external conversions (PHENIX preliminary)

Example $n_{q,\gamma}=4$ with p_T/n_q match

- $\chi^2 = 768.049$
- $NDF = 61$
- $\chi^2 / NDF = 12.591$

Sarah Campbell -- ECT* Workshop
Electromagnetic Probes of Strongly Interacting Matter -- May 23, 2013
χ^2/NDF space in $n_{q,\gamma}$

- p_T/n_q match
- KE_T/n_q match

Sarah Campbell -- ECT* Workshop
Electromagnetic Probes of Strongly Interacting Matter -- May 23, 2013
Extract $v_{2,q}(p_{T,q})$ from n_q-scaled π, K, p

- Fit v_2/n_q vs K_{E_T}/n_q with scaled GammaDist
 - Probability density of Gamma distribution
 - 3 parameters (γ, μ, β) + scale parameter A
 - Exclude protons when they separate in 20-40%, $K_{E_T} > 1$
Also seen at LHC in ALICE

Using conversions

Sarah Campbell -- ECT* Workshop
Electromagnetic Probes of Strongly Interacting Matter -- May 23, 2013
n_q scaling at the LHC

• n_q scaling for pi, K → not for pbar
 – Pbar blueshifted by 0.2 GeV/c

arXiv:1107.0080
arXiv:1207.1886