Emergent BCS regime of 2D fermionic Hubbard model: ground-state phase diagram

Boris Svistunov
University of Massachusetts, Amherst

Youjin Deng (USTC, Hefei)
Evgeny Kozik (King’s College, London)
Nikolay Prokof’ev (UMass, Amherst)

Advances in Diagrammatic Monte Carlo Methods for Quantum Field Theory Calculations in Nuclear-, Particle-, and Condensed Matter Physics
ECT*, Trento, 5-9 October 2015
\[H = -t \sum_{\langle ij \rangle} a_{\sigma_i}^+ a_{\sigma_j} + U \sum_i n_{\uparrow i} n_{\downarrow i}, \quad n_{\sigma_i} = a_{\sigma_i}^+ a_{\sigma_i} \]
Cooper instability via linear response

Modify the Hamiltonian:

\[H \rightarrow H + \left(\eta_{12}^* \psi_1 \psi_2^* + \text{H.c.} \right) \]

Study linear response

\[\langle \psi_1 \psi_2 \rangle \]

infinitesimally small

Diagrammatically:

\[\langle \psi_1 \psi_2 \rangle = G_{13} G_{24} \eta_{34} + \]

irreducible
(in the Cooper channel)
four-pole vertex
Singular response: eigenvector-eigenvalue problem

Response diverges when the following eigenvalue becomes equal to 1.

Corresponding eigenvector defines the pairing channel.
The four-pole vertex T is small and temperature independent.

Green’s function has a Fermi-liquid form (close to the Fermi surface):

$$G(k, \xi) \approx \frac{z(\hat{k})}{i\xi - v_F(\hat{k}) \cdot [k - k_F(\hat{k})]}$$

Temperature dependence of the eigenvalue is due to the Green’s function factor:

$$\lambda(T) = g \ln \left(\# E_F / T \right) \Rightarrow \quad T_c = \# E_F e^{-1/g}$$

$g \ll 1$
Ladder summation trick

\[\Gamma_{12} = -U \delta(\tau_1 - \tau_2) \]

\[= \Gamma + \Pi_{13} \Gamma_{32} \]

\[\Gamma(\tau, k) = -U \delta(\tau) + \tilde{\Gamma}(\tau, k) \]

The two terms substantially compensate each other, but only in the integral sense.

Introduce new object:

\[\int_0^\beta \tilde{\Gamma}_U(\tau) d\tau = -U \]

Now we can combine the two:

\[A_{1234} = \tilde{\Gamma}_U(\tau_1 - \tau_2) G_{\uparrow}(\tau_1 - \tau_3) G_{\downarrow}(\tau_1 - \tau_4) + \tilde{\Gamma}(\tau_1 - \tau_2) G_{\uparrow}(\tau_2 - \tau_3) G_{\downarrow}(\tau_2 - \tau_4) \]
The eigenvector-eigenvalue problem in 2D

Momenta live on the Fermi surface.

Frequencies approach zero.

Fermi surface is parameterized in terms of polar angle θ.

$$\int_0^{2\pi} \tilde{T}_{\theta,\theta'} \phi_{\theta'} \frac{d\theta'}{2\pi} = g\phi_{\theta}$$

$$\tilde{T}_{\theta,\theta'} = Q_{\theta}^2 T_{\theta,\theta'} Q_{\theta'}^2$$

$$Q_{\theta} = \frac{k_F(\theta) z^2(\theta)}{2\pi \hat{\theta} \cdot v_F(\theta)}$$
D_{4h} nomenclature for the square lattice

\[f_s(\theta) = \sum_{m=0}^{\infty} A_m \cos(4m\theta) \]

\[f_g(\theta) = \sum_{m=1}^{\infty} B_m \sin(4m\theta) \]

\[
\begin{align*}
\left\{ \begin{array}{c}
p_y \\ p_x \\
\end{array} \right\} (\theta) &= \sum_{m=0}^{\infty} C_m \left\{ \begin{array}{c}
\cos[(2m+1)\theta] \\
\sin[(2m+1)\theta] \\
\end{array} \right\}
\end{align*}
\]

\[
\begin{align*}
\left\{ \begin{array}{c}
d_{x^2-y^2} \\ d_{xy} \\
\end{array} \right\} (\theta) &= \sum_{m=0}^{\infty} \left\{ \begin{array}{c}
D_m \cos[(4m+2)\theta] \\
E_m \sin[(4m+2)\theta] \\
\end{array} \right\}
\end{align*}
\]
Weakness of BCS coupling

\[T_c = \# E_F e^{-1/g} \]
Nonexistence of the Luttinger-Ward Functional and Misleading Convergence of Skeleton Diagrammatic Series for Hubbard-Like Models

Evgeny Kozik,¹,²,* Michel Ferrero,² and Antoine Georges³,²,⁴

¹Physics Department, King’s College London, Strand, London WC2R 2LS, United Kingdom
²Centre de Physique Théorique, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France
³Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
⁴DPMC, Université de Genève, 24 Quai Ernest Ansermet, CH-1211 Genève, Suisse
(Received 21 July 2014; published 15 April 2015)
Shifted-action expansion: controlled dressed diagrammatic schemes

R. Rossi, F. Werner, N. Prokof'ev, and BS, 2015
Partial dressing

original action

\[S[\psi] = \langle \psi \mid G_0^{-1} \mid \psi \rangle + S_{\text{int}}[\psi] \]

auxiliary action

\[S_{\xi}^{(N)}[\psi] = \langle \psi \mid \tilde{G}_N^{-1} + \xi \Lambda_1 + \ldots + \xi^N \Lambda_N \mid \psi \rangle + \xi S_{\text{int}}[\psi] \]

\[\tilde{G}_N^{-1} + \Lambda_1 + \Lambda_2 + \ldots + \Lambda_N = G_0^{-1} \quad \Rightarrow \quad S_{\xi=1}^{(N)} = S \]

self-energies of corresponding orders, playing the role of counter-terms

equivalence to the original action
Full dressing:
sufficient condition for converging to correct answer

(i) The sequence \tilde{G}_N converges and is uniformly bounded.

(ii) The sequence

$$\xi \Lambda_1[\tilde{G}_N] + \xi^2 \Lambda_2[\tilde{G}_N] + \ldots + \xi^N \Lambda_N[\tilde{G}_N]$$

converges and is uniformly bounded within a circle $|\xi| < \xi_0$, where $\xi_0 > 1$.