(QCD) axions as CDM

how to distinguish from WIMPs?

Sacha Davidson T Schwetz, M Elmer
and thanks to Georg Raffelt
IN2P3/CNRS, France

1a. Reminder:
• the QCD axion
• PQPT after inflation ⇒ axions from misalignment and string-network decay

1b. to compute dynamics of axion energy density?
...ask the Path Integral...
⇒ Einsteins Eqns with \(T^{\mu\nu}(a_{cl}, f(x, p)) \)

2. growing Large Scale Structure ...is dynamical... + non-linear
• initial conditions
• linear era
• \(\delta \rho/\rho \gtrsim 1 : \) a static solution ⇔ the halo of Andromeda today
We all know the QCD axion...

1. strong CP solution: can have \(\delta L \sim -\theta \frac{g_s^2}{32\pi^2} G_{\mu\nu} A^{\mu\nu} \) ... To suppress \(\theta \lesssim 10^{-10} \) (nedm: Pich-deRafael, Pospelov-Ritz) arrange fermions to transfer \(\theta \) onto phase of scalar field \(\Phi \) via chiral anomaly, \(|\Phi| \) gets large \(\sim 10^{12} \) GeV vev.

2. one new light dynamical field = phase of \(\Phi = \) axion

Peccei Quinn
Kim, Shifman-Vainshtein-Zakharov
Dine-Fischler-Srednicki, Zhitnitsky
We all know the QCD axion...

1. strong CP solution: can have \(\delta L \sim -\theta \frac{g_s^2}{32\pi^2} G^A_{\mu\nu} \tilde{G}^{\mu\nu} A \ldots \) To suppress \(\theta \lesssim 10^{-10} \) (nedm: Pich-deRafael, Pospelov-Ritz) arrange fermions to transfer \(\theta \) onto phase of scalar field \(\Phi \) via chiral anomaly, \(|\Phi| \) gets large (\(\sim 10^{12} \) GeV) vev.

2. *one* new light dynamical field = phase of \(\Phi = \) axion

3. axion of QCD \(\Rightarrow \) fix potential

\[
V(a) \approx f_\pi^2 m_\pi^2 [1 - \cos(a/f)] \approx \frac{1}{2} m^2 a^2 - \frac{1}{4!} \frac{m^2}{f^2} a^4 + \frac{1}{6!} \frac{m^2}{f^4} a^6 + \ldots
\]

\[
m_a \sim \frac{m_\pi f_\pi}{f} \approx 6 \times 10^{-5} \frac{10^{11} \text{GeV}}{f} \text{eV}
\]

\[
\lambda = \frac{m^2}{4! f^2} \approx 10^{-49} \left(\frac{m}{0.0001 \text{eV}} \right)^4
\]

(but \(\lambda \) not small compared to grav: \(\frac{1}{f^2} \sim 10^{16} G_N \), and attractive...keep in *field* equations?)
1. *If* first inflation, *then* the axion is born: $\Phi \rightarrow f e^{i a / f}$

 * a random $-\pi f \leq a \leq \pi f$ in each horizon (= correlation length)

 $$\langle a^2 \rangle_U \text{ today} \sim \pi^2 f^2 / 3$$

 * ...one string/horizon

 ...wait loooong time til QCD PT (notice $\rho_a = 0$)
Cosmological history \rightarrow fluctuation spectrum

1. *IF* first inflation, then the axion is born: $\Phi \rightarrow fe^{ia/f}$
 * a random $-\pi f \leq a \leq \pi f$ in each horizon (= correlation length)

 $$\langle a^2 \rangle_U \text{ today} \sim \pi^2 f^2 / 3$$

 * ...one string/horizon

 ...wait loooong time til QCD PT *(notice $\rho_a = 0$)*

2. QCD Phase Transition $(T \sim 200 \text{ MeV})$: ...χ sym. breaks *(tilt mexican hat)*

 $$m_a(t) : 0 \rightarrow f_\pi m_\pi / f \Rightarrow V(a) = f_{\text{PQ}}^2 m_a^2 [1 - \cos(a / f_{\text{PQ}})]$$

 * ... at $H < m_a$, "misaligned" axion field starts oscillating around the minimum

 * energy density $m_a^2 \langle a_0 \rangle^2 / R^3(t)$ density today higher for smaller mass

 * strings go away *(radiate cold axions, $\vec{p} \sim H \lesssim 10^{-6} m_a$)*

 $$\Omega_{\text{axion}} \sim \Omega_{\text{CDM}} \iff m_a \sim 10^{-4} \text{ eV}$$

 Hiramatsu et al 1012.5502
Step back: how to compute what?

Two sources/populations of CDM axions: from misalignment and strings
- classical field?
- Bose Einstein Condensate?
- made of particles

no matter! I only need to know: how do they evolve?

⇒ consult the path integral/(delphic oracle)
Step back: how to compute what?

Two sources/populations of CDM axions: from misalignment and strings
\[
\begin{align*}
\text{classical field?} & \quad \left\{ \begin{array}{c}
\text{Bose Einstein Condensate?} \quad \text{?same?} \\
\text{made of particles} \quad \text{?different? ?? ??}
\end{array} \right. \\
\text{no matter! I only need to know: how do they evolve?}
\end{align*}
\]
\[\Rightarrow \text{consult the path integral/(delphic oracle)}\]

- variables = expectation values of n-pt functions ($\phi \equiv$ axion)
 \[
 \langle \phi \rangle \leftrightarrow \text{classical field } = \text{misalignment axions } \phi_{cl}
 \]
 \[
 \langle \phi(x_1)\phi(x_2) \rangle \leftrightarrow \text{(propagator) + distribution of particles } f(x,p)
 \]
 \[?\text{put the string axions here?}\]
Step back: how to compute what?

Two sources/populations of CDM axions: from misalignment and strings

- classical field?
- Bose Einstein Condensate?

\[\begin{cases} \text{?same?} \\ \text{?different?} \end{cases} \]

made of particles

no matter! I only need to know: how do they evolve?

⇒ consult the path integral/(delphic oracle)

• variables = expectation values of \(n \)-pt functions (\(\phi \equiv \text{axion} \))

\[
\langle \phi \rangle \leftrightarrow \text{classical field} = \text{misalignment axions } \phi_{cl} \\
\langle \phi(x_1)\phi(x_2) \rangle \leftrightarrow \text{(propagator) + distribution of particles } f(x, p)
\]

?put the string axions here?

• get Eqns of motion for expectation values in Closed Time Path formulation

Einstein's Eqns with \(T^{\mu\nu}(\phi_{cl}, f) + \text{quantum corrections}(\lambda, G_N) \)

(in 2 Particle Irreducible formulation, get EoM simultaneously for 1 , 2-pt fns)

⇒ simple @ leading order (Saddle Pt of Path Int.): Einstein's Eqns with \(T^{\mu\nu}(\phi_{cl}, f) \).

Quantum corrections as perturbative expansion in \(G_N, \lambda \) (both tiny)

do 2ParticleIrred, ClosedTimePath PI in CurvedSpaceTime?
Equations for CDM axions: Einstein with $T_{\mu\nu}(a_{cl}, f(x, p))$

$f(x, p)$ for non-rel. incoherent axion modes: like WIMPs (so ignore in remainder):

$$T_{\mu\nu} = \begin{bmatrix} \rho & \rho \vec{v} \\ \rho \vec{v} & \rho v_i v_j \end{bmatrix}$$

compare to perfect fluid: $T_{\mu\nu} = (\rho + P) U_{\mu} U_{\nu} - P g_{\mu\nu}$. $P_{int} \propto \lambda^2 \to 0$, nonrel $\Rightarrow P \ll \rho$, $U = (1, \vec{v})$, $|\vec{v}| \ll 1$
Equations for CDM axions: Einstein with $T_{\mu\nu}(a_{cl}, f(x,p))$

$f(x,p)$ for non-rel. incoherent axion modes : like WIMPs (so ignore in remainder):

$$T_{\mu\nu} = \begin{bmatrix}
\rho & \rho \vec{v} \\
\rho \vec{v} & \rho v_i v_j
\end{bmatrix}$$

compare to perfect fluid: $T_{\mu\nu} = (\rho + P)U_\mu U_\nu - Pg_{\mu\nu}$. $P_{int} \propto \lambda^2 \to 0$, nonrel $\Rightarrow P \ll \rho, U = (1, \vec{v}), |\vec{v}| \ll 1$

Classical field in non-relativistic limit ($a \to \frac{1}{\sqrt{2m}} \sigma(x)e^{i\theta(x)}e^{-imt}$)

$$T_{\mu\nu} = [\nabla^\mu a \nabla^\nu a] - g^{\mu\nu}\left(\frac{1}{2} \nabla^\alpha a \nabla_{\alpha} a - V(a)\right)$$

$$\Delta T^i_j \sim \partial_i a \partial_j a \text{ , } \lambda a^4$$

Sikivie

different pressures with classical field + self-interactions at $O(\lambda)$

\equiv Bose Einstein condensate (1. field = order param in QFT. 2. is defn of cond. mat.)
Part II: Forming Large Scale Structure with misalignment axions?

(and axion born after inflation \(\Rightarrow\) miniclusters)

1. initial conditions for the field

2. assume linear growth is “standard”

3. not do dynamics of minicluuster collapse/ galaxy formation — requires numerics

4. statics for FIELD: stable axion + Newton configuration

5. observational bounds
Initial spectrum of axion density fluctuations

(QCDPT = complicated...start a bit after)

1a: misalignment axions spatially random on co-moving QCDPT-horizon scale

≡ miniclusters, white noise spectrum $\langle \frac{\delta M_a}{M_a} \rangle \sim \sqrt{\frac{M_{\text{mini}}}{M_a}}$

Hogan, Rees
Tkachev+Kolb
Initial spectrum of axion density fluctuations

(QCDPT = complicated...start a bit after)

1a: misalignment axions spatially random on co-moving QCDPT-horizon scale

≡ miniclusters, white noise spectrum \(\langle \delta M_a / M_a \rangle \sim \sqrt{\frac{M_{\text{mini}}}{M_a}} \)

\[
M_{\text{mini}} \sim V_{\text{osc}} m_a n_{\text{osc}} E
\]

\[
m(T_{\text{osc}}) = 3H(T_{\text{osc}}), \quad E \sim 2 \rightarrow 8
\]

curious variation by \(\sim 10^3 \) in \(E/V \) estimates in literature? +some include axions from strings

\[
M_{\text{mini}} \sim \frac{\pi^2 m f_{PQ}^2}{H^2(T_{\text{osc}})} \sim \begin{cases}
3 \times 10^{-14} M_{\odot} & \text{Etal + Villadoro} \\
3 \times 10^{-13} M_{\odot} & \text{int. inst. liq.} \\
3 \times 10^{-12} M_{\odot} & \text{Kitano, Yamada}
\end{cases}
\]
Initial spectrum of axion density fluctuations

(QCDPT = complicated...start a bit after)

1a: misalignment axions spatially random on co-moving QCDPT-horizon scale

≡ miniclusters, white noise spectrum \(\langle \frac{\delta M_a}{M_a} \rangle \sim \sqrt{\frac{M_{\text{mini}}}{M_a}} \)

\[
M_{\text{mini}} \sim V_{\text{osc}} m_a n_{\text{osc}} E
\]

\[m(T_{\text{osc}}) = 3H(T_{\text{osc}}), E \sim 2 - 8\]

\[
M_{\text{mini}} \sim \frac{\pi^2 m_f^2 P Q}{H^2(T_{\text{osc}})} \sim \left\{
\begin{array}{ll}
3 \times 10^{-14} M_\odot & \text{Etal + Villadoro} \\
3 \times 10^{-13} M_\odot & \text{int. inst. liq.} \\
3 \times 10^{-12} M_\odot & \text{Kitano, Yamada}
\end{array}
\right.
\]

1b: axion field(+string-decay-prods) inherit adiabatic \(\delta \rho / \rho \) on LSS scales from bath

2. phase space distribution of NR axions from strings

???fluctuation spectrum?? \(\frac{\delta \rho_a}{\rho_a} \sim 1 \) on scale \(H_{\text{QCDPT}}^{-1} \)
Linear Fluctuation Evolution

standard lore: matter fluctuations in horizon “frozen” in rad. fluid ’til $\rho_{\text{mat}} \gtrsim \rho_{\text{rad}}$

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G_N \rho \dot{\rho}_a \delta + c_s^2 \frac{k^2}{R^2(t)} \delta = \text{non-lin-grav}$$

$$\left(\delta \equiv \frac{\delta \rho_{\text{mat}}(\vec{k}, t)}{\bar{\rho}_{\text{mat}}(t)}, \delta_{\text{rad}} = 0 \right)$$
Linear Fluctuation Evolution

standard lore: matter fluctuations in horizon “frozen” in rad. fluid ’til $\rho_{mat} \gtrsim \rho_{rad}$

\[\ddot{\delta} + 2H\dot{\delta} - 4\pi G_N\bar{\rho}_a \delta + c_s^2 \frac{k^2}{R^2(t)} \delta = \text{non-lin-grav} \]

\[\left(\delta \equiv \frac{\delta \rho_{mat}(k, t)}{\bar{\rho}_{mat}(t)} , \ \delta_{rad} = 0 \right) \]

1. For $\delta \sim 10^{-5}$ fluctuations on LSS scales:
 * pressure ($c_s^2 \sim \delta P/\delta \rho$) irrelevant because $k \to 0$
 * non-lin on LSS scales negligeable because $\delta \ll$. And $\delta \sim 1$ on small scales
 nelegible for large LSS scales because separation of scales
 (virial on small scales \Rightarrow cancellations among non-lin terms)

2. for the miniclusters ?

\[c_s^2 \sim \left(\frac{k}{mR(t)} \right)^2 - \lambda \frac{a^2(t)}{m^2} \]

* so neglect pressure for $\lambda_{comov} \gtrsim \sqrt{\frac{H_{HCD}}{m} \frac{1}{H_{QCD}}} \sim \text{Jeans}$
* are grav.non-linearities irrelevant? Hogan+ Rees said frozen til t_{eq}
 \Rightarrow suppose correct
* ...when $\delta \rho_a \sim \bar{\rho}_{rad + mat}$, decouples from Hubble + collapse
 hierarchical process

\Rightarrow to what?
Eqns to look for stable grav. bd solution

1. NR axion field (NB $[\phi] = m^{3/2}$):

 \[a = \frac{1}{\sqrt{2m}}(\phi e^{-imt} + \phi^* e^{imt}) \]

2. EoM from $T^{\mu\nu}_{\nu} = 0$, either
 1) Schrodinger-like (Gross Pitaevskii):

 \[\dot{\phi} = -\frac{\nabla^2}{2m} \phi - |g|(\phi^\dagger \phi)\phi + mV_N \phi \]

 with

 \[|g| = \frac{1}{8f^2}, \quad \nabla^2_N(x - x') = 4\pi G_N \rho(x'), \]
Eqns to look for stable grav. bd solution after collapse

1. NR axion field (NB $[\phi] = m^{3/2}$):

 $$a = \frac{1}{\sqrt{2m}}(\phi e^{-imt} + \phi^* e^{imt})$$

2. EoM from $T_{\mu\nu} = 0$, either
 1) Schrodinger-like (Gross Pitaevskii):

 $$\dot{\phi} = -\frac{\nabla^2}{2m} \phi - |g|(\phi^\dagger \phi)\phi + mV_N \phi$$

 with

 $$|g| = \frac{1}{8f_{PQ}^2}, \quad \nabla^2 V_N(x - x') = 4\pi G_N \rho(x'),$$

 2) write $\phi = \sqrt{\frac{p}{m}} e^{-iS}$ and $v^j = -\partial_j S / m$, get fluid eqns:

 $$\partial_t \rho = -\nabla \cdot \rho \tilde{v}$$

 $\rho \partial_t \tilde{v} + \rho \tilde{v} \cdot \nabla \tilde{v} = \rho \nabla \left(\frac{\nabla^2 \sqrt{\rho}}{2m^2 \sqrt{\rho}} + |g| \frac{\rho}{m^2} - V_N\right)$$

 Euler.
Stable solution that could occur after collapse

1 recall fluid eqns (with \(\phi = \sqrt{\frac{\rho}{m}} e^{-iS} \) and \(v^j = -\partial_j S/m \)),

\[
\partial_t \rho = -\nabla \cdot (\rho \vec{v}) \quad \text{continuity}
\]

\[
\rho \partial_t \vec{v} + \rho \vec{v} \cdot \nabla \vec{v} = \rho \nabla \left(\frac{\nabla^2 \sqrt{\rho}}{2m^2 \sqrt{\rho}} + |g| \frac{\rho}{m^2} - V_N \right) \quad \text{Euler}
\]

* eqns for dust extra terms for axion field, \(|g| \sim 1/f^2 \sim \lambda/m^2\)
Stable solution that could occur after collapse

1 recall fluid eqns (with $\phi = \sqrt{\frac{\rho}{m}} e^{-iS}$ and $v^j = -\partial_j S / m$),

$$\partial_t \rho = -\nabla \cdot \rho \vec{v} \quad \text{continuity}$$

$$\rho \partial_t \vec{v} + \rho \vec{v} \cdot \nabla \vec{v} = \rho \nabla \left(\frac{\nabla^2 \sqrt{\rho}}{2m^2 \sqrt{\rho}} + |g| \frac{\rho}{m^2} - V_N \right) \quad \text{Euler},$$

* eqns for dust extra terms for axion field, $|g| \sim 1 / f^2 \sim \lambda / m^2$
* self-interaction pressure inwards: $\frac{\partial}{\partial r} r^{-n} < 0$
* fluid parameters single-valued (no shell-crossing \Rightarrow shocks, etc.) ... different from $f(x, p)$

“Bose Stars” in GR, Rindler-Daller+Shapiro, Chavanis, ... Broadhurst etal (numerics)
Stable solution that could occur after collapse

1 recall fluid eqns (with $\phi = \sqrt{\frac{\rho}{m}} e^{-iS}$ and $v^j = -\partial_j S/m$),

$$\partial_t \rho = -\nabla \cdot \rho \vec{v} \quad \text{continuity}$$

$$\rho \partial_t \vec{v} + \rho \vec{v} \cdot \nabla \vec{v} = \rho \nabla \left(\frac{\nabla^2 \sqrt{\rho}}{2m^2 \sqrt{\rho}} + |g| \frac{\rho}{m^2} - V_N \right) \quad \text{Euler}$$

* eqns for dust extra terms for axion field, $|g| \sim 1/f^2 \sim \lambda/m^2$
* self-interaction pressure inwards: $\frac{\partial}{\partial r} r^{-n} < 0$
* fluid parameters single-valued (\Rightarrow shocks, etc.) ... different from $f(x,p)$

"Bose Stars" in GR, Rindler-Daller+Shapiro, Chavanis, ... Broadhurt etal (numerics)

2 Set LHS of Euler $\simeq 0$ (stable soln), dim analysis:

$$\left(\frac{1}{2m^2 R^2} - |g| \frac{M}{m^2 R^3} - G_N \frac{M}{R} \right) \simeq 0 \quad \Rightarrow \quad R \sim \frac{m_{pl}^2}{4m^2 M} \left(1 \pm \sqrt{1 \mp \frac{m^2 M^2}{2f^2 m_{pl}^2}} \right)$$
Stable solutions

approx stationary soln to Euler, with self-int sign from $\mathcal{L}_a \supset \pm \frac{\lambda}{4!} a^4$

$$R \sim \frac{m_{pl}^2}{4 m^2 M} \left(1 \pm \sqrt{1 \pm \lambda \frac{48 M^2}{m_{pl}^2}} \right)$$

the QCD axion, $m \sim 10^{-4}$ eV, $\lambda \sim \frac{m^2}{f^2} \sim -10^{-45}$,

$$\Rightarrow \quad R \sim \frac{m_{pl}^2}{4 m^2 M}, \quad M \lesssim \frac{m_{pl} f}{m}.$$

$R \sim 100$ km, $M_{max} \sim 10^{-(14 \rightarrow 13)} M_\odot \left(\frac{10^{-4} \text{eV}}{m} \right)^2 \simeq \left\{ \begin{array}{l} \text{asteroid!} \ \\ \lesssim \text{minicluster} \end{array} \right.$

Andromeda: $M \sim 10^{12} M_\odot$, flat rotn curves to 100s kpc. ...halo not composed of oscillating axion field?

(numerical ansatz for the radial fn, allowing breathing mode) Chavanis

heavier, smaller solutions, if account for $1 - \cos(a)$ potential

BraatenMohapatraZhang
If allow for rotation, can we get a bigger object?

• Include rotation via Virial thm:

\[E_{grav} + 2E_{cin} + 3E_{si} = 0 \]

\[E_{grav} = \int dV \frac{\rho}{2} V_N, \quad E_{si} = g \int dV \frac{\rho^2}{2m^2}, \quad E_{cin} = \frac{1}{2} \int dV \left[\frac{(\nabla \rho)^2}{4\rho m^2} + \rho |\vec{v}|^2 \right]. \]

assume applies for rotating axion drop.

• Implement rotn in field Eqns, because simple to impose continuity of phase

\[\phi(r, \theta, \varphi) \simeq \text{top} - \text{hat} \times \sin^l \theta e^{i l \varphi} \]

• See that \(E_{grav}, E_{SI} \sim \sqrt{l + 1} \) (drop flattens to disk for large \(l \))
\(E_{cin} \sim l^2 \) (angular momentum + gradient in \(\theta \))

\[M \lesssim \frac{m_{pl} f 1 + 4l(l + 1)}{m \sqrt{l + 1}} \lesssim \frac{1 + 4l(l + 1)}{\sqrt{l + 1}} \times 10^{-13} \ M_\odot. \]

• Asteroids have masses, radii \(\sim \) non-rotating axion drops, rotation periods \(\sim 6 \) hours. Equatorial rotation frequency of drop at \(r_c, \omega \simeq l/(r_c^2 m) \simeq 6l/\text{day}, \Rightarrow (?) \) low \(l \) are realistic.

\[\Rightarrow M_{max} \text{ grows by } \sim \text{order of mag} \text{ (confirmed numerics)} \]
Dynamics!

Figure 2: A slice of density field of ψDM simulation on various scales at $z = 0.1$. This scaled sequence (each of thickness 60 pc) shows how quantum interference patterns can be clearly seen everywhere from the large-scale filaments, tangential fringes near the virial boundaries, to the granular structure inside the haloes. Distinct solitonic cores with radius $\sim 0.3 - 1.6$ kpc are found within each collapsed halo. The density shown here spans over nine orders of magnitude, from 10^{-1} to 10^8 (normalized to the cosmic mean density). The color map scales logarithmically, with cyan corresponding to density $\lesssim 10$.

SchiveChiuehBroadhurst, Nature, $m \sim 10^{-22} \text{eV}$
Constraints on DM of the size of asteroids?

window where Primordial Black Holes can contribute $\Omega_{BH} \sim 0.1$:

(femtolensing) $10^{-13} M_\odot \leq M_{PBH} \lesssim 10^{-9} M_\odot$ (microlensing)

($PBH \lesssim 10^{-18} M_\odot$ evaporate)

Micro-lensing: halo object amplifies light from nearby stars (LMC)

Femtolensing: source = GRBs, lensing objects in intervening space, signal = oscillation in energy spectrum (interference between light that took two different paths round the lensing object)

BATSE: exclude $\Omega \sim 0.2$ for $10^{-16} \rightarrow 10^{-13} M_\odot$

(+ picolensing bounds = 1 σ sensitivity to $\Omega \sim 1$ of compact objects in the mass range $10^{-12.5} M_\odot \rightarrow 10^{-9} M_\odot$.)

FERMI :GRBs at measured redshift, exclude $\Omega > 0.03$ in compact objects of mass between $5 \times 10^{-17} \rightarrow 5 \times 10^{-15} M_\odot$

(assumes GRB = point source. Is GRB projected onto lens plane smaller than Einstein radius?)

\Rightarrow axion asteroids allowed as (at least part of) DM?

? hierarchical clustering? (need more coherence among analyses before excluding :))
Other constraints?

1. Do the drops evaporate due to self-interactions?

2. Do axion drops shine like comets (could be bound on \(\sim 10^{-14}M_\odot \))?

3. What is cross-section in CMB? geometric? (Starkmann et al argue for “collisional damping” constraints if yes. Might depend on whether drops accumulate baryons?)

4. One can ask what happens if a drop meets an ordinary star, a white dwarf, a neutron star, or a black hole?

5. The “explosion” of axion drops was recently proposed as a possible source for Fast Radio Bursts.
Suppose PQ phase transition after inflation...two axion contributions to CDM. (Assume) linear fluctuation growth like WIMPs.

1. “particles” from strings: cluster like WIMPS/N-body (?). ⇒ in our galaxy, a non-rel. maxwellian distribution, approximate as axion field

2. misalignment axions ...have “miniclusters”...similar size (?) to stable grav. bound configuration, which is size of an asteroid (not galactic halo, field cannot support itself with velocity dispersion...). Asteroid density $\sim f \times 10^{-5}/AU^3$. ⇒ “not even an estimate” that misalignment axion contribution to CDM in our galaxy is an oscillating backgrd field at our planet. ? what is assumed in direct detection sensitivity plots?

* need to study: galaxy formation with axion field ⇔ what does field look like in galaxy today?

...? and what if axion born before inflation: all axions in the field, no miniclusters. ...what is small scale $\delta \rho/\rho$? How collapses to what?

Do asteroids evaporate?
Backup
From the chiral anomaly to axion models

1. The chiral anomaly says can remove it by a chiral phase rotn on massless quarks

\[q_L \to e^{-i\theta/4} q_L, \quad q_R \to e^{i\theta/4} q_R \implies \theta \frac{g_s^2}{32\pi^2} G\tilde{G} \to 0 \times \frac{g_s^2}{32\pi^2} G\tilde{G} \]

In classical theory of massless quarks, chiral phase rotns are a sym:

\[\delta \mathcal{L} \propto \theta \partial_\mu J_5^\mu = 0 \]

but not in quantum theory due to mass scale introduced for renormalisation

\[\delta \mathcal{L} \propto \theta \partial_\mu J_5^\mu = \theta \frac{g_s^2N}{8\pi^2} G\tilde{G} \]

(true, because predicts \(\pi_0 \to \gamma\gamma \))

2. But SM quarks are not massless :(.

\[m_{\overline{q}LqR} \to e^{i\theta/2} m_{\overline{q}LqR} \]

3. Add ... quarks with a mass invariant under chiral rotns!

\[\implies \text{introduce new quarks, and new complex scalar } \Phi = |\Phi|e^{ia/f}, \text{ such that } \]

\[\Phi \to e^{-i\theta/2} \Phi, \text{ whose vev } (\sim 10^{11} \text{ GeV}) \text{ gives mass to new quarks} \]

\[\mathcal{L} = \mathcal{L}_{SM} + \partial_\mu \Phi^\dagger \partial^\mu \Phi + i \overline{\Psi} D / \Psi + \{\lambda \Phi \overline{\Psi} \Psi + h.c.\} + V(\Phi) \]

4. \(\theta \) is gone, \(|\Phi| \) and new quarks are heavy...remains at low energy \(a \), the axion.
What is a Bose Einstein Condensate?

1. all the particles in the zero mode?
 - but that was undergrad stat. mech. definition, before learned QFT
 - necessarily homogeneous + isotropic

2. expectation value of a field
 - consistent with QFT defn of a phase transition; expectation value = order parameter
 - definition in etal+ Pitaevskii stat mech review about BECs of cold atoms
 - the misalignement axions are this...

Above defns are inequivalent...but no need to worry(words don’t matter)...instead, let focus on what we want to know: how axions are born and evolve in U.
Can't do the path integral, why bother thinking about it?

1. no need to worry about definitions and dynamics of Bose Einstein Condensates

2. gives recipe for computing quantum corrections: perturbative expansion in G_N, λ (both tiny)

Defn of previous slide:

$$\phi_{cl} = \frac{\int D\phi e^{i\int d^4x (\mathcal{L} - J\phi)}}{\int D\phi e^{i\mathcal{S}[\phi, J]}}$$

* ϕ_{cl} is "observable" classical field, all quantum stuff summed.

ϕ_{cl} arg of $\Gamma_{eff}[\phi_{cl}] = \ln\{PI\} - \int d^4x J\phi = \text{effective action, generator of 1PI diagrams...} = S + O(\bar{\alpha})$ in saddle-pt approx \Rightarrow EoM $\Gamma_{eff} = 0$

Alternate defn: saddle-pt of the PI \equiv solution of classical Eqn of Motion.

Path Integral $\propto \int D\phi e^{-i (S - \int J\phi)}$, with $S = \int d^4x \mathcal{L}$, so

$$\phi_0 \ni \frac{\delta S}{\delta \phi} = \frac{\delta \mathcal{L}}{\delta \phi} - \partial_\mu \frac{\delta \mathcal{L}}{\delta \partial_\mu \phi} = J$$

Then distribute $\bar{\alpha}$ in \mathcal{L} such that absent from Eqn of Motion.

3. Path Integral defn gives recipe for including $O(\bar{\alpha})$ corrections = field evaporation, interaction with particles

* timescale for axion-particles-from-strings to scatter axions out of field $\gg \tau_{\Upsilon}$

* timescale for $4 \rightarrow 2$ evaporation $\gg \tau_{\Upsilon}$