(QCD) axions as CDM

how to distinguish from WIMPs?

Sacha Davidson T Schwetz, M Elmer and thanks to Georg Raffelt IN2P3/CNRS, France

1a. Reminder:

- the QCD axion
- PQPT after inflation ⇒ axions from misalignment and string-network decay
- 1b. to compute dynamics of axion energy density?
 - ...ask the Path Integral...
 - \Rightarrow Einsteins Eqns with $T^{\mu\nu}(a_{cl}, f(x, p))$
- 2. growing Large Scale Structure ...is dynamical...+ non-linear

- initial conditions
- linear era
- $\delta \rho / \rho \gtrsim 1$: a **static** solution \Leftrightarrow the halo of Andromeda today

We all know the QCD axion...

- 1. strong CP solution: can have $\delta \mathcal{L} \sim -\theta \frac{g_s^2}{32\pi^2} G_{\mu\nu}^A \widetilde{G}^{\mu\nu A}$... To suppress $\theta \lesssim 10^{-10}$ (nedm:Pich-deRafael, Pospelov-Ritz) arrange fermions to transfer θ onto phase of scalar field Φ via chiral anomaly, $|\Phi|$ gets large ($\sim 10^{12}$ GeV) vev.
- 2. one new light dynamical field = phase of $\Phi = axion$

Peccei Quinn Kim , ShifmanVainshteinZakharov DineFischlerSrednicki,Zhitnitsky

We all know the QCD axion...

- 1. strong CP solution: can have $\delta \mathcal{L} \sim -\theta \frac{g_s^2}{32\pi^2} G_{\mu\nu}^A \widetilde{G}^{\mu\nu A}$... To suppress $\theta \lesssim 10^{-10}$ (nedm:Pich-deRafael, Pospelov-Ritz) arrange fermions to transfer θ onto phase of scalar field Φ via chiral anomaly, $|\Phi|$ gets large ($\sim 10^{12}$ GeV) vev.
- 2. one new light dynamical field = phase of $\Phi = axion$

Peccei Quinn Kim , ShifmanVainshteinZakharov DineFischlerSrednicki,Zhitnitsky

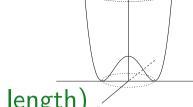
3. axion of **QCD** \Rightarrow fix potential

$$V(a) \approx f_{\pi}^{2} m_{\pi}^{2} [1 - \cos(a/f)] \simeq \frac{1}{2} m^{2} a^{2} - \frac{1}{4!} \frac{m^{2}}{f^{2}} a^{4} + \frac{1}{6!} \frac{m^{2}}{f^{4}} a^{6} + \dots$$

$$m_{a} \sim \frac{m_{\pi} f_{\pi}}{f} \simeq 6 \times 10^{-5} \frac{10^{11} \text{GeV}}{f} \text{eV} \qquad \lambda = \frac{m^{2}}{4! f^{2}} \simeq 10^{-49} \left(\frac{m}{.0001 \text{eV}}\right)^{4}$$

(but λ not small compared to grav: $\frac{1}{f^2}\sim 10^{16}G_N$, and attractive...keep in field equations?)

Cosmological history → **fluctuation spectrum**



1. IF first inflation, then the axion is born: $\Phi \to f e^{ia/f}$ a = a random $-\pi f \le a \le \pi f$ in each horizon (= correlation length),

$$\langle a^2 \rangle_{U\ today} \sim \pi^2 f^2/3$$

* ...one string/horizon

...wait loooong time til QCD PT (notice $\rho_a = 0$)

Cosmological history → **fluctuation spectrum**

- v(r)
- 1. IF first inflation, then the axion is born: $\Phi \to f e^{ia/f}$ * a random $-\pi f \le a \le \pi f$ in each horizon (= correlation length)

$$\langle a^2 \rangle_{U\ today} \sim \pi^2 f^2/3$$

* ...one string/horizon

... wait loooong time til QCD PT (notice $\rho_a = 0$)

- 2. QCD Phase Transition ($T\sim 200$ MeV): ... χ sym. breaks (tilt mexican hat) $m_a(t):0\to f_\pi m_\pi/f \Rightarrow V(a)=f_{\rm PQ}^2 m_a^2 [1-\cos(a/f_{\rm PQ})]$
 - * ... at $H < m_a$, "misaligned" axion field starts oscillating around the minimum
 - * energy density $m_a^2 \langle a_0 \rangle^2 / R^3(t)$ density today higher for smaller mass
 - * strings go away (radiate cold axions, $\vec{p} \sim H \lesssim 10^{-6} m_a$) $\Omega_{axion} \sim \Omega_{CDM} \iff m_a \sim 10^{-4} \; \mathrm{eV}$

Hiramatsu etal 1012.5502

Step back: how to compute what?

```
Two sources/populations of CDM axions: from misalignment and strings classical field?
Bose Einstein Condensate?
made of particles

no matter! I only need to know: how do they evolve?

⇒ consult the path integral/(delphic oracle)
```

Step back: how to compute what?

```
Two sources/populations of CDM axions: from misalignment and strings classical field?
Bose Einstein Condensate? }?same? }?different? ?? ???
made of particles
no matter! I only need to know: how do they evolve?

⇒ consult the path integral/(delphic oracle)
```

• variables = expectation values of n-pt functions ($\phi \equiv axion$) $\langle \phi \rangle \leftrightarrow classical field = misalignment axions <math>\phi_{cl}$ $\langle \phi(x_1)\phi(x_2) \rangle \leftrightarrow (propagator) + distribution of particles <math>f(x,p)$?put the string axions here?

Step back: how to compute what?

```
Two sources/populations of CDM axions: from misalignment and strings classical field?
Bose Einstein Condensate? }?same? }?different? ?? ???
made of particles
no matter! I only need to know: how do they evolve?

⇒ consult the path integral/(delphic oracle)
```

- variables = expectation values of n-pt functions ($\phi \equiv \text{axion}$) $\langle \phi \rangle \leftrightarrow \text{classical field} = \text{misalignment axions } \phi_{cl}$ $\langle \phi(x_1)\phi(x_2)\rangle \leftrightarrow \text{(propagator)} + \text{distribution of particles } f(x,p)$?put the string axions here?
- get Eqns of motion for expectation values in Closed Time Path formulation Einsteins Eqns with $T^{\mu\nu}(\phi_{cl},f)$ + quantum corrections (λ,G_N) (in 2 Particle Irreducible formulation, get EoM simultaneously for 1 , 2-pt fns)
- \Rightarrow simple @ leading order(Saddle Pt of Path Int.): Einsteins Eqns with $T^{\mu\nu}(\phi_{cl},f)$. Quantum corrections as perturbative expansion in G_N , λ (both tiny)

Equations for CDM axions: Einstein with $T_{\mu\nu}(a_{cl},f(x,p))$

f(x,p) for non-rel. incoherent axion modes : like WIMPs (so ignore in remainder):

$$T_{\mu
u} = \left[egin{array}{ccc}
ho &
hoec{v} \
hoec{v} &
ho v_i v_j \end{array}
ight]$$

 $\rho v \qquad \rho v_i v_j$ compare to perfect fluid: $T_{\mu\nu} = (\rho + P) U_\mu U_\nu - P g_{\mu\nu} \ . \ P_{int} \propto \lambda^2 \to 0, \ \text{nonrel} \Rightarrow P \ll \rho, U = (1,\vec{v}), |\vec{v}| \ll 1$

Equations for CDM axions: Einstein with $T_{\mu\nu}(a_{cl},f(x,p))$

f(x,p) for non-rel. incoherent axion modes : like WIMPs (so ignore in remainder):

$$T_{\mu
u} = \left[egin{array}{ccc}
ho &
hoec{v} \
hoec{v} &
ho v_i v_j \end{array}
ight]$$

compare to perfect fluid: $T_{\mu\nu}=(\rho+P)U_{\mu}U_{\nu}-Pg_{\mu\nu}$. $P_{int}\propto\lambda^2\to 0$, nonrel $\Rightarrow P\ll\rho, U=(1,\vec{v}), |\vec{v}|\ll 1$ Classical field in non-relativistic limit ($a\to \frac{1}{\sqrt{2m}}\sigma(x)e^{i\theta(x)}e^{-imt}$)

$$T_{\mu\nu} = \left[\nabla^{\mu}a\nabla^{\nu}a\right] - g^{\mu\nu}\left(\frac{1}{2}\nabla^{\alpha}a\nabla_{\alpha}a - V(a)\right)$$

$$= \begin{bmatrix} \rho & \rho\vec{v} \\ \rho\vec{v} & \rho v_{i}v_{j} + \Delta T_{ij} \end{bmatrix} \qquad \Delta T_{j}^{i} \sim \partial_{i}a\partial_{j}a , \lambda a^{4}$$

Sikivie

different pressures with classical field+ self-interactions at $\mathcal{O}(\lambda)$

 \equiv Bose Einstein condensate(1. field = order param in QFT. 2. is defin of cond. mat.)

Part II: Forming Large Scale Structure with misalignment axions?

(and axion born after inflation \Rightarrow miniclusters)

- 1. initial conditions for the field
- 2. assume linear growth is "standard"
- 3. not do dynamics ofminicluster collapse/ galaxy formation requires numerics
- 4. statics for FIELD : stable axion + Newton configuration
- 5. observational bounds

Initial spectrum of axion density fluctuations

(QCDPT = complicated...start a bit after)

1a: misalignment axions spatially random on co-moving QCDPT-horizon scale

$$\equiv$$
 miniclusters, white noise spectrum $\langle \frac{\delta M_a}{M_a} \rangle \sim \sqrt{\frac{M_{mini}}{M_a}}$

Hogan, Rees Tkachev+Kolb

Initial spectrum of axion density fluctuations

(QCDPT = complicated...start a bit after)

1a: misalignment axions spatially random on co-moving QCDPT-horizon scale

$$\equiv$$
 miniclusters, white noise spectrum $\langle rac{\delta M_a}{M_a}
angle \sim \sqrt{rac{M_{mini}}{M_a}}$

Hogan, Rees Tkachev+Kolb

$$M_{mini} \sim V_{osc} m_a n_{osc} E$$

$$m(T_{osc}) = 3H(T_{osc}), E \sim 2 \rightarrow 8$$

curious variation by $\sim 10^3$ in E/V estimates in literature? +some include axions from strings

E: Turner86 Lyth92,BaeEtal08

$$M_{mini} \sim \frac{\pi^2 m f_{PQ}^2}{H^2(T_{osc})} \simeq \left\{ \begin{array}{ll} 3 \times 10^{-14} M_{\odot} & \mathrm{Etal} + \mathrm{Villadoro} \\ 3 \times 10^{-13} M_{\odot} & \mathrm{int.\ inst.\ liq.} \\ 3 \times 10^{-12} M_{\odot} & \mathrm{Kitano,\ Yamada} \end{array} \right.$$

Initial spectrum of axion density fluctuations

(QCDPT = complicated...start a bit after)

1a: misalignment axions spatially random on co-moving QCDPT-horizon scale

$$\equiv$$
 miniclusters, white noise spectrum $\langle rac{\delta M_a}{M_a}
angle \sim \sqrt{rac{M_{mini}}{M_a}}$

Hogan, Rees Tkachev+Kolb

$$M_{mini} \sim V_{osc} m_a n_{osc} E$$

$$m(T_{osc}) = 3H(T_{osc}), E \sim 2 - 8$$

E: Turner86 Lvth92,BaeEtal08

$$M_{mini} \sim \frac{\pi^2 m f_{PQ}^2}{H^2(T_{osc})} \simeq \left\{ egin{array}{ll} 3 imes 10^{-14} M_{\odot} & {
m Etal + Villadoro} \\ 3 imes 10^{-13} M_{\odot} & {
m int. inst. liq.} \\ 3 imes 10^{-12} M_{\odot} & {
m Kitano, Yamada} \end{array}
ight.$$

1b: axion field(+string-decay-prods) inherit adiabatic $\delta \rho/\rho$ on LSS scales from bath

2.phase space distribution of NR axions from strings

??fluctuation spectrum?? $\frac{\delta \rho_a}{\rho_a} \sim 1$ on scale H_{QCDPT}^{-1} ??

Linear Fluctuation Evolution

standard lore: matter fluctuations in horizon "frozen" in rad. fluid 'til $ho_{mat} \gtrsim
ho_{rad}$

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G_N \overline{\rho}_a \delta + c_s^2 \frac{k^2}{R^2(t)} \delta = \text{non-lin-grav} \qquad \left(\delta \equiv \frac{\delta \rho_{mat}(\vec{k}, t)}{\overline{\rho}_{mat}(t)}, \ \delta_{rad} = 0\right)$$

Linear Fluctuation Evolution

standard lore: matter fluctuations in horizon "frozen" in rad. fluid 'til $ho_{mat} \gtrsim
ho_{rad}$

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G_N \overline{\rho}_a \delta + c_s^2 \frac{k^2}{R^2(t)} \delta = \text{non} - \text{lin} - \text{grav} \qquad \left(\delta \equiv \frac{\delta \rho_{mat}(\vec{k}, t)}{\overline{\rho}_{mat}(t)}, \ \delta_{rad} = 0\right)$$

- 1. For $\delta \sim 10^{-5}$ fluctuations on LSS scales: \star pressure $(c_s^2 \sim \delta P/\delta \rho)$ irrelevant because $k \to 0$
 - \star non-lin on LSS scales negligeable because $\delta \ll$. And $\delta \sim 1$ on small scales negligeable for large LSS scales because separation of scales Peebles, LSS sec 28

(virial on small scales \Rightarrow cancellations among non-lin terms)

2. for the miniclusters ?

$$c_s^2 \sim \left(\frac{k}{mR(t)}\right)^2 - \lambda \frac{a^2(t)}{m^2}$$

 $\mathsf{defn}\ c_{S}$ Peebles+Ratra

- so neglect pressure for $\lambda_{comov} \gtrsim \sqrt{\frac{H_{HCD}}{m} \frac{1}{H_{OCD}}} \simeq$ Jeans
- are grav.non-linearities irrelevant? Hogan+ Rees said frozen til t_{eq} \Rightarrow suppose correct
- ...when $\delta \rho_a \sim \bar{\rho}_{rad+mat}$, decouples from Hubble + collapse hierarchical process

Hogan+Rees FairbairnEtal

Eqns to look for stable grav. bd solution

1. NR axion field (NB $[\phi] = m^{3/2}$),:

$$a = \frac{1}{\sqrt{2m}}(\phi e^{-imt} + \phi^* e^{imt})$$

- 2. EoM from $T^{\mu\nu}_{;\nu} = 0$, either
 - 1) Schrodinger-like (Gross Pitaevskii):

$$\dot{\phi} = -\frac{\nabla^2}{2m}\phi - |g|(\phi^{\dagger}\phi)\phi + mV_N\phi$$

with
$$|g|=rac{1}{8f^2}$$
 , $abla_x^2V_N(x-x')=4\pi G_N
ho(x')$,

Eqns to look for stable grav. bd solution after collapse

1. NR axion field (NB $[\phi] = m^{3/2}$),:

$$a = \frac{1}{\sqrt{2m}}(\phi e^{-imt} + \phi^* e^{imt})$$

- 2. EoM from $T^{\mu\nu}_{;\nu} = 0$, either
 - 1) Schrodinger-like (Gross Pitaevskii):

$$\dot{\phi} = -\frac{\nabla^2}{2m}\phi - |g|(\phi^{\dagger}\phi)\phi + mV_N\phi$$

with
$$|g|=\frac{1}{8f_{\rm PQ}^2}\text{, }\nabla_x^2V_N(x-x')=4\pi G_N\rho(x')\text{,}$$

2) write $\phi = \sqrt{\frac{\rho}{m}}e^{-iS}$ and $v^j = -\partial_j S/m$, get fluid eqns:

$$\partial_t \rho = -\nabla \cdot \rho \vec{v} \qquad \text{continuity}$$

$$\rho \partial_t \vec{v} + \rho \vec{v} \cdot \nabla \vec{v} = \rho \nabla \left(\frac{\nabla^2 \sqrt{\rho}}{2m^2 \sqrt{\rho}} + |g| \frac{\rho}{m^2} - V_N \right) \quad \text{Euler} \quad ,$$

Stable solution that could occur after collapse

 ${f 1}$ recall fluid eqns (with $\phi=\sqrt{rac{
ho}{m}}e^{-iS}$ and $v^j=-\partial_j S/m$),

$$\partial_t \rho = -\nabla \cdot \rho \vec{v} \qquad \text{continuity}$$

$$\rho \partial_t \vec{v} + \rho \vec{v} \cdot \nabla \vec{v} = \rho \nabla \left(\frac{\nabla^2 \sqrt{\rho}}{2m^2 \sqrt{\rho}} + |g| \frac{\rho}{m^2} - V_N \right) \quad \text{Euler} \quad ,$$

* eqns for dust extra terms for axion field, $|g| \sim 1/f^2 \sim \lambda/m^2$

Stable solution that could occur after collapse

 ${f 1}$ recall $f\!luid$ eqns (with $\phi=\sqrt{rac{
ho}{m}}e^{-iS}$ and $v^j=-\partial_j S/m$),

$$\partial_t \rho = -\nabla \cdot \rho \vec{v} \qquad \text{continuity}$$

$$\rho \partial_t \vec{v} + \rho \vec{v} \cdot \nabla \vec{v} = \rho \nabla \left(\frac{\nabla^2 \sqrt{\rho}}{2m^2 \sqrt{\rho}} + |g| \frac{\rho}{m^2} - V_N \right) \quad \text{Euler} \quad ,$$

- * eqns for dust extra terms for axion field, $|g| \sim 1/f^2 \sim \lambda/m^2$
- * self-interaction pressure inwards: $\frac{\partial}{\partial r}r^{-n} < 0$
- * fluid parameters single-valued (no shell-crossing \Rightarrow shocks, etc.) ... different from f(x,p)

"Bose Stars" in GR, Rindler-Daller+Shapiro, Chavanis, ... Broadhurt etal (numerics)

Stable solution that could occur after collapse

 ${f 1}$ recall $f\!luid$ eqns (with $\phi=\sqrt{rac{
ho}{m}}e^{-iS}$ and $v^j=-\partial_j S/m$),

$$\partial_t \rho = -\nabla \cdot \rho \vec{v} \qquad \text{continuity}$$

$$\rho \partial_t \vec{v} + \rho \vec{v} \cdot \nabla \vec{v} = \rho \nabla \left(\frac{\nabla^2 \sqrt{\rho}}{2m^2 \sqrt{\rho}} + |g| \frac{\rho}{m^2} - V_N \right) \quad \text{Euler} \quad ,$$

- * eqns for dust extra terms for axion field, $|g| \sim 1/f^2 \sim \lambda/m^2$
- * self-interaction pressure inwards: $\frac{\partial}{\partial r}r^{-n} < 0$
- * fluid parameters single-valued (\Rightarrow shocks, etc.) ... different from f(x,p)

"Bose Stars" in GR, Rindler-Daller+Shapiro, Chavanis, ... Broadhurt etal (numerics)

2Set LHS of Euler $\simeq 0$ (stable soln), dim analysis:

$$\left(\frac{1}{2m^2R^2} - |g| \frac{M}{m^2R^3} - G_N \frac{M}{R}\right) \simeq 0 \quad \Rightarrow \quad R \sim \frac{m_{pl}^2}{4m^2M} \left(1 \pm \sqrt{1 \mp \frac{m^2M^2}{2f^2m_{pl}^2}}\right)$$

Stable solutions

BarrancoBernal Rindler-DallerShapiro Chavanis+ DavidsonSchwetz

approx stationary soln to Euler , with self-int sign from $\mathcal{L}_a \supset \pm \frac{\lambda}{4!} a^4$

$$R \sim \frac{m_{pl}^2}{4m^2} \frac{1}{M} \left(1 \pm \sqrt{1 \pm \lambda \frac{48M^2}{m_{pl}^2}} \right)$$

the QCD axion, $m\sim 10^{-4}$ eV, $\lambda\sim -\frac{m^2}{f^2}\sim -10^{-45}$,

$$\Rightarrow R \sim \frac{m_{pl}^2}{4m^2M} , M \lesssim \frac{m_{pl}f}{m}.$$

$$R \sim 100 \text{ km}$$
 , $M_{max} \sim 10^{-(14 \to 13)} M_{\odot} \left(\frac{10^{-4} \text{eV}}{m}\right)^2 \simeq \begin{cases} \text{asteroid!} \\ \lesssim \text{minicluster} \end{cases}$

Andromeda: $M\sim 10^{12}M_{\odot}$, flat rotn curves to 100s kpc. ...halo not composed of oscillating axion field? (numerical ansätz for the radial fn, allowing breathing mode Chavanis)

heavier, smaller solutions, if account for $1 - \cos(a)$ potential

Braaten Mohapatra Zhang

.

If allow for rotation, can we get a bigger object? Rindler-DallerShapiro, ALP halos, $m \ll$, repulsive SI.

• Include rotation via Virial thm:

$$E_{grav} + 2E_{cin} + 3E_{si} = 0$$

$$E_{grav} = \int dV \frac{\rho}{2} V_N, \qquad E_{si} = g \int dV \frac{\rho^2}{2m^2}, \qquad E_{cin} = \frac{1}{2} \int dV \left[\frac{(\nabla \rho)^2}{4\rho m^2} + \rho |\vec{v}|^2 \right].$$

assume applies for rotating axion drop.

• Implement rotn in field Eqns, because simple to impose continuity of phase

$$\phi(r,\theta,\varphi) \simeq \text{top} - \text{hat} \times \sin^l \theta e^{il\varphi}$$

• See that $E_{grav}, E_{SI} \sim \sqrt{l+1}$ (drop flattens to disk for large l) $E_{cin} \sim l^2$ (angular momentum + gradient in θ)

$$M \lesssim \frac{m_{pl}f}{m} \frac{1 + 4l(l+1)}{\sqrt{l+1}} \lesssim \frac{1 + 4l(l+1)}{\sqrt{l+1}} \times 10^{-13} M_{\odot}.$$

• Asteroids have masses, radii \sim non-rotating axion drops, rotation periods ~ 6 hours. Equatorial rotation frequency of drop at r_c , $\omega \simeq l/(r_c^2 m) \simeq 6l/{\rm day}$, \Rightarrow (?) low l are realistic.

 $\Rightarrow M_{max}$ grows by \sim order of mag (confirmed numerics)

Dynamics!

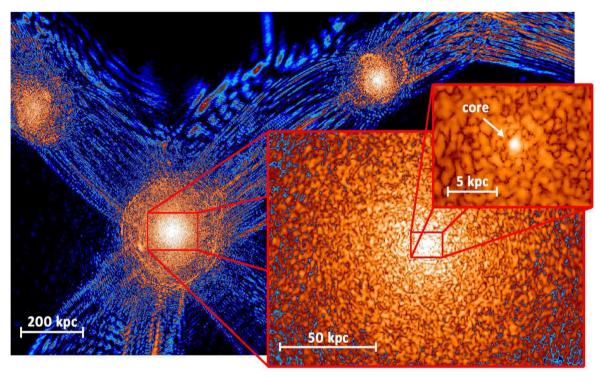


Figure 2: A slice of density field of ψ DM simulation on various scales at z=0.1. This scaled sequence (each of thickness 60 pc) shows how quantum interference patterns can be clearly seen everywhere from the large-scale filaments, tangential fringes near the virial boundaries, to the granular structure inside the haloes. Distinct solitonic cores with radius $\sim 0.3-1.6$ kpc are found within each collapsed halo. The density shown here spans over nine orders of magnitude, from 10^{-1} to 10^{8} (normalized to the cosmic mean density). The color map scales logarithmically, with cyan corresponding to density $\lesssim 10$.

Constraints on DM of the size of asteroids?

window where Primordial Black Holes can contribute $\Omega_{BH} \sim .1$:

(femtolensing)
$$10^{-13} M_{\odot} \lesssim M_{PBH} \lesssim 10^{-9} M_{\odot}$$
 (microlensing)

(PBH
$$\lesssim 10^{-18} M_{\odot}$$
 evaporate)

Micro-lensing:halo object amplifies light from nearby stars (LMC)

Femtolensing: source = GRBs, lensing objects in intervening space, signal = oscillation in energy spectrum (interference between light that took two different paths round the lensing object)

BATSE: exclude $\Omega \sim 0.2$ for $10^{-16} \to 10^{-13} M_{\odot}$ (+ picolensing bounds = 1 σ sensitivity to $\Omega \sim 1$ of compact objects in the mass range $10^{-12.5} M_{\odot} \to 10^{-9} M_{\odot}$.)

FERMI :GRBs at measured redshift, exclude $\Omega>0.03\,$ in compact objects of mass between

$$5 \times 10^{-17} \rightarrow 5 \times 10^{-15} M_{\odot}$$

Barnacka Glicenstein Moderski

(assumes GRB = point source. Is GRB projected onto lens plane smaller than Einstein radius?)

\Rightarrow axion asteroids allowed as (at least part of) DM

? hierarchical clustering ? (need more coherence among analyses before excluding :))

Other constraints?

1. Do the drops evaporate due to self-interactions?

Tkachev, Riotto

- 2. Do axion drops drops shine like comets (could be bound on $\lesssim 10^{-14} M_{\odot}$)?
- 3. What is cross-section in CMB? geometric? (Starkmann et al argue for "collisional damping" constraints if yes. Might depend on whether drops accumulate baryons?
- 4. One can ask what happens if a drop meets an ordinary star, a white dwarf, a neutron star, or a black hole?

disk stars

Dokuchaev Eroshenko Tkachev

5. The "explosion" of axion drops was recently proposed as a possible source for Fast Radio Bursts.

Tkachev

(Summary), Speculations + Provocations

Suppose PQ phase transition after inflation...two axion contributions to CDM. (Assume) linear fluctuation growth like WIMPs.

- 1. "particles" from strings: cluster like WIMPS/N-body (?). \Rightarrow in our galaxy, a non-rel. maxwellian distribution, approximate as axion field
- 2. misalignment axions ...have "miniclusters" ...similar size (?) to stable grav. bound configuration, which is size of an asteroid (not galactic halo, field cannot support itself with velocity dispersion...). Asteroid density $\sim f \times 10^{-5}/AU^3$.
- ⇒ "not even an estimate" that misalignment axion contribution to CDM in our galaxy is an oscillating backgrd field at our planet. ? what is assumed in direct detection sensitivity plots?
- * need to study: galaxy formation with axion field \Leftrightarrow what does field look like in galaxy today?
- ...? and what if axion born before inflation: all axions in the field, no miniclusters. ...what is small scale $\delta \rho/\rho$? How collapses to what?

Do asteroids evaporate?

Backup

Srednicki NPB85

1. the chiral anomaly says can remove it by a chiral phase rotn on massless quarks

$$q_L \to e^{-i\theta/4} q_L$$
 , $q_R \to e^{i\theta/4} q_R$ \Rightarrow $\theta \frac{g_s^2}{32\pi^2} G\widetilde{G} \to 0 \times \frac{g_s^2}{32\pi^2} G\widetilde{G}$

In classical theory of massless quarks, chiral phase rotus are a sym:

$$\delta \mathcal{L} \propto \theta \partial_{\mu} J_5^{\mu} = 0$$

but not in quantum theory due to mass scale introduced for renormalisation

$$\delta \mathcal{L} \propto \theta \partial_{\mu} J_{5}^{\mu} = \theta \frac{g_{s}^{2} N}{8\pi^{2}} G\widetilde{G}$$

(true, because predicts $\pi_0 \to \gamma \gamma$)

2. but SM quarks are not massless :(

$$m\overline{q_L}q_R \to e^{i\theta/2}m\overline{q_L}q_R$$

3. add ... quarks with a mass invariant under chiral rotns!

 \Rightarrow introduce new quarks, and new complex scalar $\Phi = |\Phi|e^{ia/f}$, such that $\Phi \to e^{-i\theta/2}\Phi$, whose vev ($\sim 10^{11}$ GeV) gives mass to new quarks

$$\mathcal{L} = \mathcal{L}_{SM} + \partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi + i \overline{\Psi} \not\!\!\!D \Psi + \{ \lambda \Phi \overline{\Psi} \Psi + h.c. \} + V(\Phi)$$

4. θ is gone, $|\Phi|$ and new quarks are heavy...remains at low energy a, the axion.

What is a Bose Einstein Condensate?

- 1. all the particles in the zero mode?
 - but that was undergrad stat. mech. definition, before learned QFT
 - neccessarily homogeneous + isotropic
- 2. expectation value of a field
 - consistent with QFT defn of a phase transition; expectation value = order parameter
 - definition in etal+ Pitaevskii stat mech review about BECs of cold atoms
 - the misalignement axions are this...

Above defins are inequivalent...but no need to worry (words don't matter)...instead, let focus on what we want to know: how axions are born and evolve in U.

Can't do the path integral, why bother thinking about it?

- 1. no need to worry about definitions and dynamics of Bose Einstein Condensates
- 2. gives recipe for computing quantum corrections: perturbative expansion in G_N , λ (both tiny)

Defin of previous slide :
$$\phi_{cl} = \frac{\int \mathcal{D}\phi \phi \exp{i \int d^4 x (\mathcal{L} - \mathcal{J}\phi)}}{\int \mathcal{D}\phi e^{iS[\phi,J]}}$$
 Ramond, A FT Primer chapter 3.3

 $\star \phi_{cl}$ is "observable" classical field, all quantum stuff summed.

 ϕ_{cl} arg of $\Gamma_{eff}[\phi_{cl}] = \ln\{PI\} - \int d^4x J\phi = \text{effective action, generator of 1PI diagrams...} = <math>S + \mathcal{O}(\hbar)$ in saddle-pt approx $\Rightarrow \text{ EoM } \frac{\delta \Gamma_{eff}}{\delta \phi_{cl}} = 0$ Alternate defn: saddle-pt of the PI \equiv solution of classical Eqn of Motion.

Path Integral
$$\propto \int \mathcal{D}\phi e^{-i(S-\int J\phi)}$$
, with $S = \int d^4x \mathcal{L}$, so $\phi_0 \ni \frac{\delta \mathcal{S}}{\delta \phi} = \frac{\delta \mathcal{L}}{\delta \phi} - \partial_\mu \frac{\delta \mathcal{L}}{\delta \partial_\mu \phi} = \mathcal{J}$

Then distribute \hbar in \mathcal{L} such that absent from Eqn of Motion.

- 3. Path Integral definition gives recipe for including $\mathcal{O}(\hbar)$ corrections = field evaporation, interaction with particles
 - * timescale for axion-particles-from-strings to scatter axions out of field Dyali
 - \star timescale for $4 \to 2$ evaporation $\gg \tau_U$

.