Open heavy flavour measurements at LHC with CMS

Gian Michele Innocenti on behalf of the CMS Collaboration
Massachusetts Institute of Technology

Heavy Quark Physics in Heavy-Ion collisions: experiments, phenomenology and theory
16-20 March 2015
Trento (Italy)
Introduction

• HF measurements in CMS

• What was done so far:
 → b-jet measurement in PbPb
 → non-prompt J/Psi
 → B meson in pPb collisions as a proof of feasibility

• Plans for new analyses with Run2:
 → D/B meson measurement in PbPb collisions
 → c/b jets, b-jet correlations, di-b-jets analysis
Heavy-flavour interactions with the medium

Heavy quarks produced in hard scatterings (described by pQCD) at the early stages of the collisions → Experience the full evolution of the medium

• Once produced, they strongly interact with the deconfined medium (hot nuclear matter effects):

→ In-medium energy loss as a consequence of radiative and collisional processes

Flavour-dependence of radiative energy loss:

• Larger for gluons than for quarks
 E.g. in BDMPS model [1] \(<\Delta E> \propto \alpha_s C_R q L^2 \)

• Dead cone effect: gluon radiation suppressed at small angles for massive quarks

\[\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b \]

\[R_{AA}^B > R_{AA}^D > R_{AA}^{\text{light}} \]
CMS detector

- **Inner tracker**: for charged track and vertex reconstruction
- **EM and hadron calorimeters**: for jet, photon reconstruction and isolation
- **Muon system**: for muon reconstruction and triggering

| Component | $|\eta| < $ |
|------------|-------------|
| Muon | 2.4 |
| HCAL | 5.2 |
| ECAL | 3.0 |
| Tracker | 2.5 |
How to measure heavy-flavour quarks in CMS

Non-prompt J/ψ
$O(0.1\%)$ of b-cross section

Exclusive B meson decays,
$O(0.01\%)$ of b-cross section

b-jet, $O(100\%)$ of total b-cross section
b-jet measurements

What is a b-jet?

→ A b-jet is a jet where a b-quark is identified within $\Delta R<0.3$ from jet axis
→ HF hadron does not need to be fully reconstructed

CAVEAT: b-quarks don't need to be primary. This definition of b-jet includes jets in which b-quark is produced e.g. by gluon splitting $g \rightarrow b\bar{b}$
b-jet analysis strategy

Jet reconstruction → b-jet tagging → Purity determination → Efficiency correction and resolution unfolding

Gian Michele Innocenti, MIT, ECT (Trento)
b-jet tagging

→ based on kinematic variables related to the long lifetime and large mass of b hadrons

“Secondary Vertex Tagger”

- Secondary vertex (SV) reconstructed with charged tracks with $p_T > 1$ GeV/c in the jet cone ($R=0.2$)

- b-jet contribution enhanced by requiring SVs far enough from the primary interaction vertex

- Displaced SVs identified by using a selection on the significance of the 3D flight distance
In each p_T bin we need to evaluate the fraction of genuine b-jets that pass the “Secondary vertex tagger” criteria.
- First b-jet R_{AA} measurement in PbPb collisions.
- Evidence of b-jet suppression in central PbPb events
- b-jet R_{AA} favours pQCD models that include strong jet-medium coupling
non-prompt J/ψ

JHEP 1205 (2012) 063
non-prompt J/ψ measurement

Getting closer to the b-quark kinematics!
Identification of $J/\psi \rightarrow B$ based on the measurement of displaced secondary $\mu^+\mu^-$ vertices

- The fraction of non-prompt J/ψ extracted with a simultaneous fit of invariant mass distribution of $\mu^+\mu^-$ pairs and pseudo-proper decay length $l_{J/\psi}$
non-prompt J/ψ measurement

- Clear suppression pattern vs centrality and p_T
B-meson measurements

CMS-PAS-HIN-14-004
B-meson measurement

How do we reconstruct B mesons in CMS?

→ Clean and high statistics sample collected by triggering on muons!

• \(J/\psi \rightarrow \mu^+\mu^- \) reconstruction
• Tracks are associated to \(J/\psi \) candidate to build B-meson candidates

Candidate selection variables:
• \(\chi^2 \) confidence level of B-vertex fit
• standardised decay length in XY plane
• cosine of the pointing angle

In \(B^0 \) and \(B^0_s \) case, selection on the invariant mass of the track-track system w.r.t. mass of the resonance (\(K^{0*} \) or \(\phi \))
B-meson production in pPb as a proof of feasibility

- Fit to the invariant mass distributions of B-meson candidates. Three components:
 - Signal
 - Combinatorial background from J/ψ-track(s)
 - Non-prompt component from other B-meson decays that form peaking structures (e.g. in B⁺ analysis, bkg from B⁰ → J/ψ K⁰*)
B-meson cross sections in pPb at 5.02 TeV

- $d\sigma/dp_T$ of B^+, B^0, B_s^0 and $d\sigma/dy$ of B^+ in $|y_{CM}|<1.93$ and $10<p_T<60$ GeV/c
- measurements compared to FONLL predictions at 5.02 TeV scaled by A
What have we learnt in pPb?

→ First that we can measure fully reconstructed B mesons in CMS!
→ \(R_{pA} \) consistent with unity within uncertainty
→ Important reference for the PbPb analysis
... and B^0 and B^{0s}

$\rightarrow R_{pA}$ of B^0 and B^{0s} was also measured even if with larger uncertainties

\rightarrow Both consistent with unity
Flavour-dependence of jet quenching

\[R_{AA}(b\text{-jets}) = R_{AA}(\text{inclusive jets}) \text{ at high } p_T. \]
No strong indication of flavour-dependence

\[R_{AA}(J/\psi \leftarrow B) > R_{AA}(D) \approx R_{AA}(\text{lights}) \]

Possible interpretation?
- flavour dependence relevant for \(p_T < 75 \text{ GeV/c} \)
- In GSP, energy loss as for a “massive” gluon

Huang, Kang and Vitev
PLB726 (2013) 251-256!
Prospects for future analyses
Fully reconstructed D/B mesons in PbPb

B-meson in PbPb
- Large statistics will be available next year with Run2 (1.5 nb⁻¹)
- Clean sample thanks to muon triggers
- We expect to measure B mesons in PbPb from 5-10 GeV/c to ≈100 GeV/c
- B_s/B ratio

D-meson in PbPb
- We will measure D meson production via hadronic decay in a wide p_T range
- At high-p_T we can profit from large samples collected with jet triggers
Heavy-flavour jets

b-jet in PbPb
- With 2015 data sample, we will extend the 2011 measurement down to lower p_T (about 50 GeV/c)
- Reduce uncertainty to give insights on the flavour dependence of energy loss

c-jet in PbPb
- much more difficult to be tagged
 - Shorter $\tau \approx 100-300$ μm
 - Smaller multiplicity
 - Softer vertices

Plots from Matthew Nguyen
b-jet correlations

Angular correlations of di-b-jets are sensitive to production mechanisms!

Gluon splitting processes characterised by small angle within bb pairs

- By selecting couple of b-jets with large $\Delta \Phi$ we select a sample of b di-jet mainly produced by flavour creation processes
- Most of the generators tend to under-predict the gluon splitting contribution

JHEP 1103 (2011) 136
b-jet p_T asymmetry

- The advantage of measuring asymmetry vs inclusive spectrum is reduced systematics

- By using large $\Delta \Phi$ selection we “kill” the contribution of gluon splitting processes

 CMS projection for PbPb double tagged b-jets

CMS PAS FTR 13-025

$A_J = \frac{(p_{T,1} - p_{T,2})}{(p_{T,1} + p_{T,2})}$

Projected $\sqrt{s}=5.5$ TeV, $L = 10$ nb$^{-1}$

stat. uncert. for 160 μb$^{-1}$

$p_{T,1} > 100$ GeV

$p_{T,2} > 30$ GeV

centrality : 0-10%
What do we need?

“Regional” tracking algorithm:
• standard HI tracking algorithm optimised for reconstructing tracks coming from primary vertex to reduce combinatorial background
• “regional” tracking algorithm based on sequential iterations to recover displaced tracks → the new strategy will increase reconstruction efficiency of HF topologies

HLT HF trigger developments:
→ Wide upgrade of the ECAL and HCAL trigger system in Run2

• Heavy-flavour jets:
 HF jet-triggers based on Jet trigger + b-tagging algorithms
• D mesons:
 Similar strategy based on Jet trigger + D meson filters

→ This will allow to record in 2015 the largest HF sample ever collected in HI collisions!
Call for models!

- D meson predictions from 5-10 GeV/c up to 100 GeV/c
- B meson predictions from 10 GeV/c up to 100 GeV/c
- b-jets from about 50 to 300 GeV/c
- p_T asymmetry of b-jets
-?

Please contact us in case you can provide any of these predictions!
Conclusions

• Many ways of measuring heavy-flavour production in HI in CMS!
 → Fully reconstructed D/B mesons
 → Non-prompt B → J/ψ
 → Heavy-flavoured jets

• First b-jet measurement performed in HI collisions
 → strong suppression observed in central PbPb events

• New analyses and prospects for Run2
 → Fully reconstructed B/D mesons in PbPb
 → HF jets
 → b-jet correlations

• Strong effort on heavy-flavour trigger developments for Run2
 → plans to trigger on b-jets, D and B mesons in HLT
BACKUP SLIDES
Heavy-flavour production mechanisms in pp collisions

LO process: Flavour Creation (FCR)
- gluon fusion or light $q\bar{q}$ annihilation
- $b\bar{b}$ produced back-to-back in azimuthal plane and symmetric in p_T

NLO process: Flavour Excitation (FEX)
- excitation of b/\bar{b} sea quark by gluon or light quark/anti-quark
- $b\bar{b}$ pairs produced asymmetric in p_T and with a broad opening angle

NLO process: Gluon splitting (GSP)
- gluon splits in a $b\bar{b}$ pair
- produced with small opening angles and asymmetric in p_T
- In this case, $b\bar{b}$ are not involved in the hard scattering but produced later
Heavy-flavour production mechanisms in pp collisions

LO production mechanisms are not dominant at the LHC energies

EPJC 73 (2013) 2301
Flavour creation process (FCR) in pp collisions at 7 TeV
Gluon splitting process (GSP) in pp collisions at 7 TeV
Heavy-flavour interactions with the medium

The presence of the medium where high energy partons can scatter enhances the probability of gluon radiation (gluonstrahlung)

\[\langle \Delta E \rangle \propto \alpha_s \, C_R \, q \, L^2 \]

- \(\alpha_s \) is the QCD coupling constant
- \(L \) is the in-medium path length
- \(C_R \) is the Casimir factor
 - \(C_R = 3 \) for gluons, \(C_R = 4/3 \) for quarks
- \(\hat{q} \) is the transport coefficient, proportional to the medium density

Dead cone effect: gluon radiation suppressed at small angles for massive quarks

\[\Delta E_g > \Delta E_{u,d,s} > \Delta E_c > \Delta E_b \]

A hierarchy in the nuclear modification factors of lights and heavy quarks is also expected:

\[R_{AA}^B > R_{AA}^D > R_{AA}^{\text{light}} \]

Jet reconstruction and composition

Optimise the use of calorimeter and tracker by using “Particle Flow” method

Anti-k_T algorithm with $R=0.3$

A typical high-p_T jet composition
Background subtraction

1) Background energy per tower calculated in strips of η. Pedestal subtraction

Estimate background for each tower ring of constant η
estimated background = $<p_T> + \sigma(p_T)$

- Captures $dN/d\eta$ of background
- Misses ϕ modulation – to be improved
Background subtraction

1) Background energy per tower calculated in strips of \(\eta \). Pedestal subtraction

Background level
Background subtraction

1) Background energy per tower calculated in strips of η. Pedestal subtraction

2) Run anti k_T algorithm on background subtracted towers

Background level
1) Background energy per tower calculated in strips of η. Pedestal subtraction

2) Run anti k_T algorithm on background subtracted towers

Background level
Background subtraction

1) Background energy per tower calculated in strips of η. Pedestal subtraction

2) Run anti k_T algorithm on background subtracted towers

3) Exclude reconstructed jets
Background subtraction

1) Background energy per tower calculated in strips of η. Pedestal subtraction

2) Run anti k_T algorithm on background subtracted towers

3) Exclude reconstructed jets. Recalculate the background energy

Background level
Background subtraction

1) Background energy per tower calculated in strips of η. pedestal subtraction

2) Run anti k_T algorithm on background subtracted towers

3) Exclude reconstructed jets. Recalculate the background energy

4) Run anti k_T algorithm on background subtracted towers to get final jets
Jet analysis workflow

- Raw jet energy
- Background subtraction: Remove underlying events contribution
- Jet energy correction: MC Simulation PYTHIA
- Jet energy
Gluon splitting matters!

b jets

D mesons, non-prompt J/ψ

- A non-negligible fraction of b-jets at the LHC come from gluon splitting
- Even more important for charm than for bottom at LHC energy!

Plots from Matthew Nguyen
PbPb b-jet spectra

- Spectra obtained by correcting b-jets yields for efficiency and resolution unfolding.
- Clear suppression of b-jets observed for central events
• R_{pA} is consistent with unity within the systematic uncertainty
• No suppression observed in pPb collisions at 5.02 TeV!

→ **Suppression in PbPb collisions due to interaction with the QGP**
b-jet to inclusive jet ratio

\[\text{b-jet fraction} = \frac{\text{# of tagged jets} \times \text{purity}}{\text{efficiency}} \]

- b-jet fraction consistent within pp and PbPb within uncertainty
- Both measurements consistent with MC predictions
Tracking in heavy-ion collisions

“Standard” HI Tracking (2011)

- Efficiency
- Fake track rate

- Pythia
- Pythia + Hydjet, centrality: 30-100%
- Pythia + Hydjet, centrality: 0-30%

CMS-PAS-HIN-12-013
b-jet efficiency vs misidentification

- b-jet tagging working point: reject 99% of the light jet rejection and 90% of the charm jet
• Alternative tagger used as a cross-check on SSV
• Each track assigned a probability to be from primary vertex
• Determined separately for Data and MC using negative IP tracks
• JP= probability that all tracks originate from primary vertex

\[
P_N = \prod \cdot \sum_{j=0}^{N-1} \frac{-\log \Pi}{j!}
\]

with

\[
\Pi = \prod_{i=1}^{N} P(S^i)
\]
Excellent pixel spacial resolution
• \(\approx 100 \, \mu\text{m} \) at 1 GeV/c, 20 \(\mu\text{m} \) at 20 GeV/c
• well described by MC simulations based on GEANT
b-jet cross section

Double differential cross section (y and p_T)

- MC@NLO agreement at the edge of uncertainties
- Pythia overshoots at low p_T, agrees well at high p_T