New Developments in Relaxion Models

Nayara Fonseca

DESY

Axions at the crossroads: QCD, dark matter, astrophysics

ECT*, Trento
Outline

1. Relaxation idea
2. Concerns and some solutions
3. Relaxation after inflation
4. Conclusions
Outline

1. Relaxion idea
2. Concerns and some solutions
3. Relaxation after inflation
4. Conclusions

Not the QCD axion!

Please don’t leave 😊
SM hierarchy problem: New physics at the weak scale

- **UV sensibility** to the Higgs mass: one of the leading motivation for new physics at the LHC;

- **The problem and its importance**: 170 of the 226 search channels at LHC tied to naturalness (Craig PPC ‘16)

- We need BSM at ≥ 1 TeV scale (Eg.: SUSY & Composite Higgs Models)

- No compelling evidence of BSM at the LHC current data!
SM hierarchy problem: Relaxation mechanism of the EW scale

Warming up...

\[V(h, \phi) = \frac{1}{2} m^2_H(\phi) h^2 + \cdots = \frac{1}{2} (-\Lambda^2 + g\Lambda \phi) h^2 + \cdots \]

- ϕ scans $m^2_H(\phi)$ during the cosmological evolution;
- Arrange a mechanism so that ϕ stops where we want, precisely at the EW scale:

\[m^2_H(\phi_c) = -\Lambda^2 + g\Lambda \phi_c \ll \Lambda^2 \]
The Relaxion Idea (Graham-Kaplan-Rajendran; 1504.07551 [hep-ph]) inspired by Abbott's attempt to solve the CC problem, '85

SM hierarchy problem: Relaxation mechanism of the EW scale

Warming up...

\[V(h, \phi) = \frac{1}{2} m_H^2(\phi) h^2 + \cdots = \frac{1}{2} (\Lambda^2 + g\Lambda \phi) h^2 + \cdots \]

- \(\phi \) scans \(m_H^2(\phi) \) during the cosmological evolution;
- Arrange a mechanism so that \(\phi \) stops where we want, precisely at the EW scale:

\[m_H^2(\phi_c) = -\Lambda^2 + g\Lambda \phi_c \ll \Lambda^2 \]
The Relaxion Idea (Graham-Kaplan-Rajendran; 1504.07551 [hep-ph])

Closer look: relaxion potential

\[V(h, \phi) \supset \Lambda^2 \left(\frac{g\phi}{\Lambda} - 1 \right) H^2 + \lambda H^4 + g\Lambda^3 \phi + \varepsilon \Lambda^4_c \left(\frac{\langle H \rangle}{\Lambda_c} \right)^n \cos \left(\frac{\phi}{f} \right) \]
The Relaxion Idea (GKR'15)

\[V(h, \phi) \supset \Lambda^2 \left(\frac{g \phi}{\Lambda} - 1 \right) H^2 + \lambda H^4 + g \Lambda^3 \phi + \epsilon \Lambda_c^4 \left(\frac{\langle H \rangle}{\Lambda_c} \right)^n \cos \left(\frac{\phi}{f} \right) \]
The Relaxion Idea (GKR'15)

\[V(h, \phi) \supset \Lambda^2 \left(\frac{g \phi}{\Lambda} - 1 \right) H^2 + \lambda H^4 + g \Lambda^3 \phi + \epsilon \Lambda_c^4 \left(\frac{\langle H \rangle}{\Lambda_c} \right)^n \cos \left(\frac{\phi}{f} \right) \]

- \(m_H^2(\phi) < 0 \) \(\langle H \rangle \neq 0 \)
- \(m_H^2(\phi) > 0 \) \(\langle H \rangle = 0 \)

\(\langle H \rangle \) is the Higgs vev

\[\phi_c = \Lambda/g \]

- evolution starts in the symmetric phase
 \(\phi_{\text{ini}} > \Lambda/g \)
The Relaxion Idea (GKR'15)

\[V(h, \phi) \supset \Lambda^2 \left(\frac{g\phi}{\Lambda} - 1 \right) H^2 + \lambda H^4 + g\Lambda^3 \phi + \epsilon\Lambda^4 \left(\frac{\langle H \rangle}{\Lambda_c} \right)^n \cos \left(\frac{\phi}{f} \right) \]

EW scale:
\[\langle H \rangle \sim \Lambda_c \left(\frac{g\Lambda^3 f}{\epsilon\Lambda^4_c} \right)^{1/n} \]

Interplay between barriers and \(\phi \) slope;

\(\phi \) gets stuck near: \(m_H^2(\phi) \approx 0 \)

\(\phi \) stops at \(V'(\phi) = 0 \) \(\Rightarrow \)

"Slope term"

"Stopping term"
The Relaxion Idea (GKR’15)

\[V(h, \phi) \supset \Lambda^2 \left(\frac{g \Lambda}{\Lambda} - 1 \right) H^2 + \lambda H^4 + g \Lambda^3 \phi + \epsilon \Lambda^4 \left(\frac{H}{\Lambda_c} \right)^n \cos \left(\frac{\phi}{f} \right) \]

EW scale:

- \(\phi \) gets stuck near: \(m_H^2(\phi) \approx 0 \)
- \(\phi \) stops at \(V'(\phi) = 0 \) ⇒
 - \(\langle H \rangle \sim \Lambda_c \left(\frac{g \Lambda^3 f}{\epsilon \Lambda_c^4} \right)^{1/n} \)
 - \(\Lambda \sim 10^8 \text{ GeV} \)
 - \(\Lambda_c \sim \mathcal{O}(1) \text{ TeV} \)

- \(\langle H \rangle \) in terms of fundamental parameters;
- \(\langle H \rangle \ll \Lambda \) is technically natural.
Typical constraints

Espinosa-Grojean-Panico-Pomarol-Pujolàs-Servant; 1506.09217 [hep-ph]

cosmologically stable

\(\phi \) decays after BBN

\(\phi \) cosmologically stable

\(\sigma \)

Decays leading to distortion in the galactic and extra-galactic diffuse X-ray or gamma-ray background

\[\rho_i(T) \sim \rho_{ini,i}(T/T_{osc,i})^3 \]

misalignment
Outline

1. Relaxation idea
2. Concerns and some solutions
3. Relaxation after inflation
4. Conclusions
Concerns about the original idea

- QCD relaxation?
- UV completion
- Dissipation: Hubble friction during inflation
Concerns about the original idea

• **QCD relaxation**

\[\phi \text{ is the QCD axion, } \mathcal{L} \supset \frac{g_s}{32\pi^2} \frac{\phi}{f} G_{\mu\nu} \tilde{G}^{\mu\nu} \]

○ **Relaxion parameters**

\[\Lambda_c = \Lambda_{QCD}; \quad \epsilon = Y_u; \quad V_{\text{barrier}} = \epsilon \Lambda_c^4 \left(\frac{\langle h \rangle}{\Lambda_c} \right)^n \cos \frac{\phi}{f}; \quad n = 1 \]

Naively, \[V(\phi, H) \sim m_u(H) \langle q\bar{q} \rangle \cos(\phi/f) \]

\[\Lambda < 10^7 \text{ GeV} \left(\frac{10^9 \text{ GeV}}{f} \right)^{1/6} \]

\[10^9 \text{ GeV} < f < 10^{12} \text{ GeV} \]
Concerns about the original idea

• **QCD relaxion**

\[\phi \text{ is the QCD axion, } \mathcal{L} \supset \frac{g_s^2}{32\pi^2} \frac{\phi}{f} G_{\mu\nu} \tilde{G}^{\mu\nu} \]

- But this model spoils the axion solution to the strong CP problem;
- If the relaxion is the QCD axion, its vev determines the QCD theta parameter.

\[
\Rightarrow \theta_{QCD} = \langle \frac{\Delta \phi}{f} \rangle \sim \mathcal{O}(1)
\]

(Due to the tilt of the potential)

\[\theta_{QCD} \lesssim 10^{-10} \]
Concerns about the original idea

- **QCD relaxion**

 (GKR ’15)

 \[\phi \text{ is the QCD axion}, \quad \mathcal{L} \supset \frac{g_s^2}{32\pi^2} \frac{\phi}{f} G_{\mu\nu} \tilde{G}^{\mu\nu} \]

 - \textbf{But} this model spoils the axion solution to the strong CP problem;
 - \textbf{If} the relaxion is the QCD axion, \textbf{its vev determines the QCD theta parameter.}

 \[\Rightarrow \theta_{\text{QCD}} = \langle \frac{\Delta \phi}{f} \rangle \sim \mathcal{O}(1) \]

 (Due to the tilt of the potential)

 \[\theta_{\text{QCD}} \lesssim 10^{-10} \]

 \[\text{Ways out} \]

 - \textbf{adding dynamics at the end of inflation} (removes the slope of the potential) \textbf{Cutoff scale} \(\lesssim 30 \text{ TeV} \)
 - \textbf{QCD'} relaxion
Concerns about the original idea

- QCD relaxation?
- UV completion
- Dissipation: Hubble friction during inflation
Let's check the symmetries

$$\mathcal{L} \supset \frac{1}{2}(\partial_\mu \phi)^2 - \Lambda^2 \left(\frac{g\phi}{\Lambda} - 1 \right) H^2 - \lambda H^4 - g \Lambda^3 \phi - \epsilon \Lambda_4^4 \left(\frac{\langle H \rangle}{\Lambda_4} \right)^n \cos \left(\frac{\phi}{f} \right)$$

- $g = 0, \epsilon = 0$ → continuous shift symmetry: $\phi \rightarrow \phi + c$
 Nambu-Goldstone boson

- $\epsilon \neq 0$ → breaks the continuous shift symmetry to: $\phi \rightarrow \phi + 2\pi n f$
 Pseudo Nambu-Goldstone boson

- $g \neq 0$ → breaks the discrete shift symmetry!
Concerns about the original idea

Let’s check the symmetries

\[\mathcal{L} \supset \frac{1}{2} (\partial_\mu \phi)^2 - \Lambda^2 \left(\frac{g \phi}{\Lambda} - 1 \right) H^2 - \lambda H^4 - g \Lambda^3 \phi - \epsilon \Lambda^4_c \left(\frac{\langle H \rangle}{\Lambda_c} \right)^n \cos \left(\frac{\phi}{f} \right) \]

- \(\epsilon \) term \(\Rightarrow \) Breaks the continuous shift symmetry to: \(\phi \rightarrow \phi + 2\pi n f \)

- \(g \) terms \(\Rightarrow \) Break the discrete shift symmetry!

\(\Rightarrow \phi \) is a pNGB (periodicity)

\(\Rightarrow g \) cannot break a gauge symmetry (the discrete shift symmetry is a redundancy)

Gupta-Komargodski-Perez-Ubaldi ’15
Concerns about the original idea

Let's check the symmetries

\[\mathcal{L} \supset \frac{1}{2} (\partial_\mu \phi)^2 - \Lambda^2 \left(\frac{g\phi}{\Lambda} - 1 \right) H^2 - \lambda H^4 - g \Lambda^3 \phi - \epsilon \Lambda_c^4 \left(\frac{H}{\Lambda_c} \right)^n \cos \left(\frac{\phi}{f} \right) \]

- \(\epsilon \) term \(\Rightarrow \) Breaks the continuous shift symmetry to: \(\phi \rightarrow \phi + 2\pi nf \)
- \(g \) terms \(\Rightarrow \) Break the discrete shift symmetry!

Rewrite the \(\phi \) terms as periodic functions
Effectively, it is enough to have a hierarchy of decay constants: \(F = n f \gg f \)

\[
V(\phi, H) = -\Lambda^2 H^2 + \lambda H^4 + \Lambda_F^4 \left(c_F + \frac{H^2}{M_F^2} \right) \cos \left(\frac{\phi}{F} \right) + \Lambda_f^4 \left(c_f + \frac{H^2}{M_f^2} \right) \cos \left(\frac{\phi}{f} \right)
\]
Concerns about the original idea

Effectively, it is enough to have a hierarchy of decay constants: $F = nf \gg f$

$$V(\phi, H) = -\Lambda^2 H^2 + \lambda H^4 + \Lambda_F^4 \left(c_F + \frac{H^2}{M_F^2} \right) \cos \left(\frac{\phi}{F} \right) + \Lambda_f^4 \left(c_f + \frac{H^2}{M_f^2} \right) \cos \left(\frac{\phi}{f} \right)$$

$V(\phi) \sim g\Lambda^3 \phi$

expanding $(\Phi - \pi F/2) \ll F$
How to generate large-scale hierarchies?
Model building front

4D site models

- Clockwork constructions
 Choi, Im '16; Kaplan, Rattazzi '16

No exponential hierarchies in fundamental parameters

\[U(1)^{N+1} \rightarrow U(1) \ (N+1 \ NGBs \ with \ the \ same \ decay \ constant \ \lambda): \]

\[\mathcal{L} \supset \frac{f^2}{2} \sum_{j=0}^{N} |\partial_{\mu} U_j|^2 - \frac{\epsilon f^2}{2} \sum_{j=0}^{N-1} (U_j^\dagger U_{j+1} + h.c.) \]

\[U_j(x) = e^{i\pi_j(x)/f} \]

For the zero mode:

\[\frac{F}{f} \sim q^N, \quad q > 1 \]
4D site models

- **Clockwork constructions**
 Choi, Im ’16; Kaplan, Rattazzi ’16

No exponential hierarchies in fundamental parameters

\[U(1)^{N+1} \rightarrow U(1) \quad (N+1 \text{ NGBs with the same decay constant } f) \]

\[\mathcal{L} \supset \frac{f^2}{2} \sum_{j=0}^{N} |\partial_{\mu} U_j|^2 - \frac{e f^2}{2} \sum_{j=0}^{N-1} (U_j^{\dagger} U_{j+1}^q + \text{h.c.}) \]

\[U_j(x) = e^{i \pi_j(x)/f} \]

For the zero mode:

\[\frac{F}{f} \sim q^N, \quad q > 1 \]

Clockwork 5D continuum limit

- Linear dilaton metric: Giudice, McCullough ’16
- Or not? Craig, Garcia Garcia, Sutherland [1704.07831]
- Or yes? Giudice-McCullough [1705.10162]
4D site models

- Deconstruction inspired
 NF, Lima, Machado, Matheus ‘16

 - Site-dependent couplings or vevs (hierarchy built in);
 - motivated by deconstruction of AdS$_5$ models (5D analogues).
Model building front

4D site models

- Deconstruction inspired

 NF, Lima, Machado, Matheus ‘16

 - Site-dependent couplings or vevs (hierarchy built in);
 - motivated by deconstruction of AdS₅ models (5D analogues).

\[\mathcal{L}_\Phi = \sum_{j=1}^{N} \text{Tr} \left[\partial_\mu \Phi_j^\dagger \partial^\mu \Phi_j + \frac{f^2}{2} (2-\delta_{j,1} - \delta_{j,N}) g_j^2 (\Phi_j + \Phi_j^\dagger)^2 - \frac{f^2}{2} \sum_{j=1}^{N-1} g_j g_{j+1} \text{Tr} [(\Phi_j - \Phi_j^\dagger)(\Phi_{j+1} - \Phi_{j+1}^\dagger)] \right] \quad \text{Diagonalize...} \]

\[\mathcal{L}_\eta = \sum_{j=1}^{N} \left[\frac{1}{2} \partial_\mu \eta_0 \cdot \partial^\mu \eta_0 + f^4 (2-\delta_{j,1} - \delta_{j,N}) q'^{2j} \cos \frac{\eta_0}{f_j} \right] + \sum_{j=1}^{N-1} f^4 q'^{2j+1} \sin \frac{\eta_0}{f_j} \sin \frac{\eta_0}{f_{j+1}} \]

For the zero mode: \[\frac{F}{f} \sim \frac{1}{q'^{N-1}}, \quad q' < 1 \]
Concerns about the original idea

- QCD relaxation?
- UV completion
- Dissipation: Hubble friction during inflation
Concerns about the original idea

- **Dissipation mechanism: Hubble friction during inflation**

 - **Inflation sector:** largely unspecified, but at least:

 I. $V(\phi)$ is subdominant (an extra field, i.e. the inflaton, provides the required N_e)

 $$V_I \sim H_I^2 M_{Pl}^2 > V(\phi) \sim \Lambda^4$$

 II. Relaxion classical rolling $>$ quantum fluctuations;

 $$(\Delta \phi)_{\text{class}} \sim H_I^{-1} \frac{d\phi}{dt} \sim H_I^{-2} V'$$

 $$(\Delta \phi)_{\text{quant}} \sim H_I$$

 $\rightarrow \quad H_I^3 < V'$$

\begin{align*}
\ddot{\phi} + 3H_I \dot{\phi} + \frac{\partial V}{\partial \phi} &= 0 \\
\phi = \phi(t) \quad |\dot{\phi}| \ll H|\phi| \\
\frac{dV}{d\phi} &\sim g\Lambda^3
\end{align*}
Concems about the original idea

• Dissipation mechanism: Hubble friction during inflation

 o Inflation sector: largely unspecified, but at least:

 i. $V(\phi)$ is subdominant (an extra field, i.e. the inflaton, provides the required N_e)

 $$V_I \sim H_I^2 M_{Pl}^2 > V(\phi) \sim \Lambda^4$$

 ii. Relaxion classical rolling > quantum fluctuations;

 $$(\Delta\phi)_{\text{class}} \sim H_I^{-1} \frac{d\phi}{dt} \sim H_I^{-2} V'$$

 $$(\Delta\phi)_{\text{quant}} \sim H_I$$

 $\implies H_I^3 < V'$$

 $I \& II:$

 $$\frac{\Lambda^2}{M_{Pl}} < H_I < (g\Lambda^3)^{1/3}$$
Concerns about the original idea

- **Dissipation mechanism:** Hubble friction during inflation

 - **Inflation sector:** largely unspecified, but at least:

 \[
 \frac{\Lambda^2}{M_{Pl}} < H_I < (g\Lambda^3)^{1/3}
 \]

 - \(V(\phi, H) \supset \frac{1}{2}(g\Lambda\phi - \Lambda^2)H^2 \)

 \(\phi_{ini} > \Lambda/g \) (large field excursions)

III. Inflation: long enough to scan a typical field range

\[
\Delta \phi \gtrsim \frac{\Lambda}{g} \implies
\]

large field excursion
Concerns about the original idea

- **Dissipation mechanism: Hubble friction during inflation**

 - **Inflation sector:** largely unspecified, but at least:

 \[
 \frac{\Lambda^2}{M_{Pl}} < H_I < (g\Lambda^3)^{1/3}
 \]

 \[
 V(\phi, H) \supset \frac{1}{2}(g\Lambda \phi - \Lambda^2)H^2
 \]

 \[
 \phi_{\text{ini}} > \Lambda/g \quad \text{(large field excursions)}
 \]

 - **III. Inflation:** long enough to scan a typical field range

 \[
 \Delta \phi \gtrsim \frac{\Lambda}{g} \implies N_e H_I^{-2} V' \gtrsim \frac{\Lambda}{g}
 \]

 large field excursion \quad \text{Inflation should last long enough}

 \[
 N_e \gtrsim \left(\frac{H_I}{g\Lambda}\right)^2
 \]
Concerns about the original idea

• Dissipation mechanism: Hubble friction during inflation

 o Inflation sector: largely unspecified, but at least:

 \[
 \frac{\Lambda^2}{M_{Pl}} < H_I < (g\Lambda^3)^{1/3}
 \]

 \[
 N_e \gtrsim \left(\frac{H_I}{g\Lambda} \right)^2
 \]

 ➢ Low inflation scale

 ➢ Super-Planckian field excursions

 ➢ Large number of e-folds: fine-tuning in the inflation sector
Concerns about the original idea

• Dissipation mechanism: Hubble friction during inflation

 o Inflation sector: largely unspecified, but at least:

 \[
 \frac{\Lambda^2}{M_{Pl}} < H_I < (g\Lambda^3)^{1/3}
 \]

 \[
 N_e \gtrsim \left(\frac{H_I}{g\Lambda} \right)^2
 \]

 ➢ Low inflation scale

 ➢ Super-Planckian field excursions

 ➢ Large number of e-folds: fine-tuning in the inflation sector

Alternative to Inflation: Particle production friction
Concerns about the original idea

• QCD relaxion ?
• UV completion
• Dissipation: Hubble friction during inflation
• ...

An incomplete list of relaxion possibilities
Cosmological Relaxation of the Electroweak Scale, GKR ’15
inspired by Abbott’s attempt to solve the CC problem, ’85

Cosmological Constant
• Graham, Kaplan, Rajendran; 1709.01999
• Alberete, Creminelli, Khmelnitsky, Pirtshelfova, Trincherini ’16

Dynamics during Inflation
• Non-constant Hubble;
 Patil, Schwaller ’15

Observational Constraints
• Higgs-relaxion coupling;
 Flacke, Frugiuele, Fuchs, Gupta, Perez; ‘16

• New strongly coupled sector;
 Beauchesne, Bertuzzo, di Cortona; 1705.06325

Double scanner mechanism
Espinosa, Grojean, Panico, Pomarol, Pujolàs, Servant ’16

Model building front
• 4D site models;
 Choi, Im ’16
 Kaplan, Rattazzi ’16
 NF, Lima, Machado, Matheus ’16

• 5D continuum limit;
 Giudice, McCullough ’16

• String theory (Monodromy);
 McAllister, Schwaller, Servant, Stout, Westphal ’16

• Relaxion from Warped Space
 NF, von Harling, Lima, Machado ’in preparation

Alternatives to Inflation
• Friction from particle production;
 Hook, Marques–Tavares; ’16
Outline

1. Relaxion idea
2. Concerns and some solutions
3. Relaxation after inflation
4. Conclusions
Dissipation from particle production friction (SM vectors)

Hook, Marques-Tavares ‘16

\[\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{\phi}{4f} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{\pi \alpha}{2} A_{\mu} A^{\mu} h^2 - V(\phi, h) \]

\[V \supset \frac{1}{2} (-\Lambda^2 + g \Lambda \phi) h^2 - g \Lambda^3 \phi + \frac{\lambda}{4} h^4 + \Lambda_c^4 \cos \left(\frac{\phi}{f'} \right) \]

\[\tilde{F}^{\mu\nu} = \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma} \]

\[\alpha = g_{U(1)}^2 / (4\pi) \]
Alternatives to Inflation

Dissipation from particle production friction (SM vectors)

Hook, Marques-Tavares ‘16

\[\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{\phi}{4f} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{\pi \alpha}{2} A_{\mu} A^{\mu} h^2 - V(\phi, h) \]

\[V \supset \frac{1}{2} \left(-\Lambda^2 + g \Lambda \phi \right) h^2 - g \Lambda^3 \phi + \frac{\lambda}{4} h^4 + \Lambda^4 \cos \left(\frac{\phi}{f} \right) \]

\[(m_H)^2 < 0 \]

- the evolution starts in the broken phase, i.e. the vev is large: \(\Phi_{\text{ini}} < \Lambda/g \).
Dissipation from particle production friction (SM vectors)

Hook, Marques-Tavares '16

the evolution starts in the broken phase, i.e. the vev is large: $\Phi_{\text{ini}} < \Lambda/g$.

the relaxion is coupled to a massive SM vector field:

$-g\Lambda^3\Phi$ makes the relaxion roll to larger values, decreasing the Higgs vev.
Dissipation from particle production friction (SM vectors)

Hook, Marques-Tavares ‘16

\[\mathcal{L} \supset \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \frac{1}{2} \partial_\mu h \partial^\mu h - \frac{1}{4} F_{\mu \nu} F^{\mu \nu} - \frac{\phi}{4f} F_{\mu \nu} \tilde{F}^{\mu \nu} + \frac{\pi \alpha}{2} A_\mu A^\mu h^2 - V(\phi, h) \]

- Higgs vev is sufficiently \(\leftrightarrow \) \(A_\mu \) experiences a **tachyonic instability**

\[\ddot{A}_\pm + (k^2 + m_A^2 \mp k \frac{\dot{\phi}}{f}) A_\pm = 0 \quad m_A^2 = \pi \alpha h^2 \]

- When \(A_+ \) grows exponentially, the \(\tilde{F} \) term slows down the field \(\phi \)

\[\ddot{\phi} - g \Lambda^3 + g \Lambda h^2 + \frac{\Lambda^4}{f'} \sin \frac{\phi}{f'} + \frac{1}{4f} \langle F \tilde{F} \rangle = 0 \]

\[\langle F \tilde{F} \rangle = \frac{1}{4\pi^2} \int_0^\Lambda dk \frac{d}{dt} (|A_+|^2 - |A_-|^2) \]
Alternatives to Inflation

Dissipation from particle production friction (SM vectors)

Hook, Marques-Tavares ’16

\[
\mathcal{L} \supset \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \frac{1}{2} \partial_\mu h \partial^\mu h - \frac{1}{4} F_{\mu \nu} F^{\mu \nu} - \frac{\phi}{4f} F_{\mu \nu} \tilde{F}^{\mu \nu} + \frac{\pi \alpha}{2} A_\mu A^\mu h^2 - V(\phi, h)
\]

- Higgs vev is sufficiently ↔ A_\mu experiences a tachyonic instability

\[(\omega_k)^2 < 0\]

\[\ddot{A}_\pm + (k^2 + m_A^2 \mp k \frac{\phi}{f}) A_\pm = 0 \quad m_A^2 = \pi \alpha h^2\]

- When A_+ grows exponentially, the \(\tilde{F}\) term slows down the field \(\phi\)

\[
\ddot{\phi} - g \Lambda^3 + g \Lambda h^2 + \frac{\Lambda^4}{f^2} \sin \frac{\phi}{f'} + \frac{1}{4f} \langle F \tilde{F} \rangle = 0
\]

\[
\langle F \tilde{F} \rangle = \frac{1}{4\pi^2} \int_0^\Lambda dk \frac{d}{dt} (|A_+|^2 - |A_-|^2)
\]

\[
\tilde{F}^{\mu \nu} = \epsilon^{\mu \nu \rho \sigma} F_{\rho \sigma}
\]

\[
\alpha = g^2 U(1)/(4\pi)
\]
Outline

1. Relaxion idea

2. Concerns and some solutions

3. Relaxation after inflation

4. Conclusions
Concluding Remarks and Outlook

- **Relaxation models**: the hierarchy problem might not be an argument for new physics at the TeV scale.
Concluding Remarks and Outlook

- **Relaxation models:** the hierarchy problem might not be an argument for new physics at the TeV scale.

- **Challenges & possibilities:**
 - CC;
 - dynamics during inflation;
 - alternatives to inflation;
 - observational constraints;
 - model building;
 - pheno;
 - ...
Concluding Remarks and Outlook

- Relaxation models: the hierarchy problem might not be an argument for new physics at the TeV scale.

- Challenges & possibilities:
 - CC;
 - dynamics during inflation;
 - alternatives to inflation;
 - observational constraints;
 - model building;
 - pheno;
 - ...

Thank you!