Beyond Mean-Field Boson-Fermion Model for Odd Nuclei

Kosuke NOMURA – U. Zagreb

ECT* Trento, Sept 2017
Calculation of odd nuclei — Motivation

- Variety of mean-field approaches based on energy density functional

- Quantitative study of spectroscopy necessitates inclusion of beyond-mean-field effects, — e.g., by GCM

- Extension to odd systems — i.e., time-reversal symmetry, blocking at each deformation

Q. Develop a model that allows a systematic and computationally feasible description of odd nuclei?
The method

Self-consistent mean-field (SCMF) within nuclear DFT

Construct Particle-Core coupling Hamiltonian

- Even-even core nucleus → bosonic degrees of freedom (interacting boson model IBM)
- Particle-core coupling → interacting boson-fermion model (IBFM)
This talk

... mainly discusses the methodology

Three parts:

(i) Even-even

(ii) Odd-A

(iii) Odd-A with octupole
Even-even nuclei
Synopsis of IBM

✓ simple phenomenological description of heavy nuclei by the drastic reduction of Hilbert space: boson ≈ valence nucleon pairs

✓ use of group theory — i.e., U(5)-vibrator, SU(3)-rotor, SO(6)-γ -soft rotor

- Shell model: \(\sim O(10^{14}) \) 2+ states
- IBM: 26 2+ states

Dimension:

- e.g., \(^{154}\text{Sm} \): 22 valence nucleons (12 protons + 10 neutrons)
More microscopic consideration

Otsuka, Arima, Iachello (1978)

(1) Truncation to smaller (S, D pair) subspace

(2) Mapping of Hamiltonian matrix

(3) Eigenvalue problem in (s, d) boson space

... this prescription was limited to spherical shapes

→ Why not construct the IBM Hamiltonian based on DFT?
Step 1/2. Self-consistent mean-field

Energy surface: semi-classical description of shapes (not observables)

excitation spectra and transition rates \rightarrow IBM Hamiltonian
Mapping SCMF surface onto expectation value of the IBM Hamiltonian in the boson condensate completely determines strength parameters of the Hamiltonian.

- essential boson Hamiltonian

\[\hat{H} = \epsilon \hat{n}_d + \kappa \hat{Q} \cdot \hat{\bar{Q}} \]

- Spherical driving
- Deformation driving

\[\hat{n}_d = d^\dagger \cdot \bar{d}, \quad \hat{Q} = s^\dagger \bar{d} + d^\dagger s + \chi [d^\dagger \times d]^{(2)} \]

- energy surface

\[E_{IBM}(\beta, \gamma) = \langle \phi_B(\beta\gamma) | \hat{H} | \phi_B(\beta, \gamma) \rangle \]

- boson condensate

\[|\phi_B(\beta, \gamma)\rangle \approx \left(s^\dagger + \beta \cos \gamma d_0^\dagger + \frac{1}{\sqrt{2}} \beta \sin \gamma (d_2^\dagger + d_{-2}^\dagger)\right)^N |0\rangle \]

- relation to collective model

\[\beta_{IBM} = c\beta \quad (C > 1) \quad \gamma_{IBM} = \gamma \]

Parameters (\(\epsilon, \kappa, \chi \)) are determined to reproduce the topology of the SCMF surface around the mean-field minimum. \(E_{SCMF}(\beta, \gamma) \approx E_{IBM}(\beta, \gamma) \)

Boson Hamiltonian is derived only from nucleonic d.o.f.
✓ ... IBM calculation with strength parameters determined by the mapping: no need for phenomenological fit
✓ ... systematic and economic description of excitation spectra
γ -soft nucleus

Quadrupole-octupole shape transitions in Th isotopes

spectroscopic properties → quadrupole-octupole IBM Hamiltonian with octupole f_3 boson ($J=3^-$)
\[\hat{H}_B = \hat{H}_{sd} + \hat{H}_f + \hat{H}_{sdf} \]

- sdf-bocon Hamiltonian:

\[\hat{H}_B = \epsilon_d \hat{n}_d + \epsilon_f \hat{n}_f + \kappa_2 \hat{Q} \cdot \hat{Q} + \kappa'_2 \hat{L} \cdot \hat{L} + \kappa_3 : \hat{V}_3^\dagger \cdot \hat{V}_3 : \]

\[\hat{Q} = s^\dagger \tilde{d} + d^\dagger \tilde{s} + \chi_{dd}[d^\dagger \times \tilde{d}]^{(2)} + \chi_{ff}[f^\dagger \times \tilde{f}]^{(2)}. \]

\[\hat{L} = \sqrt{10}[d^\dagger \times \tilde{d}]^{(1)} \]

\[\hat{V}_3^\dagger = s^\dagger \tilde{f} + \chi_{df}[d^\dagger \times \tilde{f}]^{(3)} \]

- Parameters: \(\epsilon_d, \epsilon_f, \kappa_2, \chi_{dd}, \chi_{ff}, \kappa'_2, \kappa_3, \chi_{df} \)

- Operators:

\[\hat{T}^{(E2)} = e_B^{(2)} \hat{Q} \]

\[\hat{T}^{(E3)} = e_B^{(3)} (\hat{V}_3^\dagger + \hat{V}_3) \]

\[\hat{T}^{(E1)} = e_B^{(1)} [d^\dagger \times \tilde{f} + f^\dagger \times \tilde{d}]^{(1)} \]
Spectroscopic properties

(a) Positive parity
- 2^+
- 4^+
- 6^+
- 8^+
- 10^+

(b) Negative parity
- 1^-
- 3^-
- 5^-
- 7^-
- 9^-

Soft octupole shape
Rigid octupole shape

(a) E3
- $B(E3; 3^- \rightarrow 0^+)$ (W.u.)

(b) E1
- $B(E1; 1^- \rightarrow 0^+)$ (W.u.)
226Th: rigid octupole deformation

![Diagram showing the excitation energy (MeV) for 226Th with experimental and theoretical states labeled.](image)

- Experimental states:
 - 12^+
 - 11^-
 - 10^+
 - 9^-
 - 8^+
 - 7^-
 - 6^+
 - 5^-
 - 4^+
 - 3^-
 - 2^+
 - 1^-
 - 0^+

- Theoretical states:
 - 12^+
 - 11^-
 - 10^+
 - 9^-
 - 8^+
 - 7^-
 - 6^+
 - 5^-
 - 4^+
 - 3^-
 - 2^+
 - 1^-
 - 0^+

The diagram includes a contour plot labeled 226Th and DD-PC1, with axes β_2 and β_3. The plot is color-coded with varying intensities indicating different energy levels.
Octupoles in rare-earth region

✓ compare the Gogny-D1M GCM results, to a similar degree of accuracy
Odd-A nuclei
$^{151-155}$Eu isotopes: particle + axially-deformed core

Even-even boson core

$^{146-154}$Sm (7–11 bosons outside of 132Sn doubly magic nucleus)

Odd proton orbitals

full $Z=50$–82 proton major shell:

- $1g_{7/2}$, $2d_{5/2}$, $2d_{3/2}$, $3s_{1/2}$ for positive parity
- $1h_{11/2}$ for negative parity
IBFM Hamiltonian:

\[\hat{H} = \hat{H}_B + \hat{H}_F + \hat{H}_{BF} \]

\[\hat{H}_B = \epsilon_d \hat{n}_d + \kappa \hat{Q}_B \cdot \hat{Q}_B + \kappa' \hat{L}_B \cdot \hat{L}_B \]

\[\hat{Q}_B = s^\dagger \hat{d} + d^\dagger s + \chi (d^\dagger \times \hat{d})^{(2)} \]

\[\hat{H}_F = \sum_j \epsilon_j [a_j^\dagger \times \tilde{a}_j]^{(0)} \]

\[\hat{H}_{BF} = \sum_{jj'} \Gamma_{jj'} \hat{Q}_B \cdot [a_{j'}^\dagger \times \tilde{a}_{j'}]^{(2)} + \sum_{jj'j''} \Lambda_{jj''}^{jj'} : [d^\dagger \times \tilde{a}_j]^{(j''')} \times [a_j^\dagger \times \tilde{d}]^{(j''')} : + \sum_j A_j [a^\dagger \times \tilde{a}_j]^{(0)} \hat{n}_d, \]

\begin{align*}
\text{dynamical term} & \text{ exchange term} & \text{monopole term} \\
\end{align*}

\[\Gamma_{jj'} = \Gamma_0 (u_j u_{j'} - v_j v_{j'}) Q_{jj'} \]

\[\Lambda_{jj''}^{jj'} = -2 \Lambda_0 \sqrt{\frac{5}{2j''} + 1} (u_j v_{j'} + v_j u_{j'}) (u_{j'} v_{j'''} + v_{j'} u_{j'''}) Q_{jj'} Q_{j'j''} \]

\[A_j = -\sqrt{2j + 1} A_0 \]

Parameters: \(\epsilon_d, \kappa, \chi, \kappa', \epsilon_j, v_j^2, \Gamma_0, \Lambda_0, A_0 \)
Constructing boson-fermion interaction

\[H = H_B + H_F + H_{BF} \]

- **Even-even boson (IBM) core**, determined by the mapping from SCMF energy surface
- **Odd (unpaired) fermion**: \(\varepsilon_j \)
- **Boson-fermion coupling**: \(v_j^2, \Gamma_0, \Lambda_0, A_0 \)

- Single-particle energies \(\varepsilon_j \) and occupation probabilities \(v_j^2 \) are calculated by the SCMF constrained at zero deformation.

- Three strength parameters for \(H_{BF} \) \((\Gamma_0, \Lambda_0, A_0) \) are fitted to data...
Collective wave functions for the lowest $\pi=+1$ and $\pi=-1$ states

As a result of including H_{BF}, one obtains solutions peaked around the minimum ($\beta = \beta_{\text{min}} \neq 0$) of the energy surface of boson core.

Input: S.P.E. & v_j^2 at zero deformation ($\beta = 0$)
Comparison with “phenomenological” parameters for Eu

Considerable differences in magnitude and trend (esp. in Λ_0^+)

cf. Phenomenological parameters taken from O. Scholten, in “Interacting Bose-Fermi Systems in Nuclei” (F. Iachello ed.)
The deviation comes mainly from different single-particle energies and occupations — e.g.,

\[\varepsilon(d_{5/2}) - \varepsilon(g_{7/2}) \approx 3 \text{ MeV (ours)} \]

\[< 0.5 \text{ MeV (Scholten)} \]

\[v^2(g_{7/2}) \approx 0.96 \text{ (ours)} \]

\[\approx 0.6 \text{ (Scholten)} \]

\[v^2(h_{11/2}) \approx 0.13 \text{ (ours)} \]

\[\approx 0.35 \text{ (Scholten)} \]
Energy spectra in odd-A Eu
Strong prolate deformed core

K=5/2^± and 3/2^± rotational bands following the J(J+1) rule, with the ΔJ=1 systematics in the strong-coupling limit
Core is soft (transitional)
Positive-parity bands showing the $\Delta J=1$ systematics in the strong-coupling limit
Negative-parity bands with the $\Delta J=2$ systematics, decoupled from the core
γ -soft cases

✓ γ -soft Ba core + odd neutron in full sdg shell
✓ 134,135 Ba: in proximity to the E(5) critical-point symmetry of U(5)-O(6) phase transition

Odd nuclei with octupole
Octupole-octupole degrees of freedom in \(^{142,144,146}\text{Ba} \) mapped onto quadrupole-octupole IBM Hamiltonian.
low-energy positive and negative-parity (one f-boson) band connected by the large E3 decay from 3− to 0+ states

Boson-fermion Hamiltonian with octupole

\[\hat{H}_{BF} = \hat{H}_{BF}^{sd} + \hat{H}_{BF}^{f} + \hat{H}_{BF}^{sdf}. \]

\(\hat{H}_{BF}^{sd} = \sum_{j_a,j_b} \gamma_{j_a,j_b}^{sd} \hat{Q}_{sd}^{(2)} \cdot [\hat{a}_{j_a}^\dagger \times \hat{\bar{a}}_{j_b}]^{(2)} + \sum_{j_a,j_b,j_c} \Lambda_{j_a,j_b,j_c}^{dd} :[[\hat{a}_{j_a}^\dagger \times \hat{d}]^{(j_c)} \times [\hat{d}^\dagger \times \hat{\bar{a}}_{j_b}]^{(j_c)}]^{(0)} : + \sum_{j_a} A_{j_a}^{d} [\hat{a}_{j_a}^\dagger \times \hat{\bar{a}}_{j_a}]^{(0)} \hat{n}_d, \)

\(\hat{H}_{BF}^{f} = \sum_{j_a,j_b} \gamma_{j_a,j_b}^{ff} \hat{Q}_{ff}^{(2)} \cdot [\hat{a}_{j_a}^\dagger \times \hat{\bar{a}}_{j_b}]^{(2)} + \sum_{j_a,j_b,j_c} \Lambda_{j_a,j_b,j_c}^{ff} :[[\hat{a}_{j_a}^\dagger \times \hat{f}]^{(j_c')} \times [\hat{f}^\dagger \times \hat{\bar{a}}_{j_b}]^{(j_c')}]^{(0)} : + \sum_{j_a} A_{j_a}^{f} [\hat{a}_{j_a}^\dagger \times \hat{\bar{a}}_{j_a}]^{(0)} \hat{n}_f, \)

\(\hat{H}_{BF}^{sdf} = \sum_{j_a,j_b,j'_b} \gamma_{j_a,j_b}^{sdf} \hat{V}_3 \cdot [\hat{a}_{j_a}^\dagger \times \hat{\bar{a}}_{j'_b}]^{(3)} + \sum_{j_a,j_b,j_c} \Lambda_{j_a,j_b,j_c}^{df} :[[\hat{a}_{j_a}^\dagger \times \hat{d}]^{(j_c)} \times [\hat{f}^\dagger \times \hat{\bar{a}}_{j'_b}]^{(j_c)}]^{(0)} :+(H.C.). \)

✓ similar \(v_j \) dependence of the coefficients
✓ 3p_{1/2,3/2} 2f_{5/2,7/2} 1h_{9/2} 21i_{13/2} major shell, boson-fermion parameters determined separately for normal- and unique-parity configs.
✓ No octupole deformation in ground state for both parity
✓ Octupole bands built on $15/2^-$ and $7/2^+$ states are predicted

... supporting experimental situation [PRC86, 044324 (2012)]
... algebraic (IBM/IBFM) Hamiltonian for nuclear spectroscopy is determined by mapping from SCMF calculation within DFT;

... allows an accurate and computationally feasible description of shapes and excitations;

... opens up possibilities of investigating a large number of heavy, odd nuclei in a systematic way.

... can boson-fermion coupling constants be determined only from SCMF?
✓ simple description of heavy nuclei by the drastic reduction of Hilbert space: boson \approx valence nucleon pairs

✓ Connection to collective model — i.e., U(5)-vibrator, SU(3)-deformed rotor, SO(6)-γ-soft rotor

✓ Hamiltonian is diagonalized in lab frame, thus providing observables

✓ in itself phenomenological, so it needs a microscopic input

→ Why not construct the IBM Hamiltonian based on DFT?
Coupling constants in terms of v^2

- **sd-boson part:**

$$A^d_j = -A_0^d \sqrt{2j + 1}$$

$$\Gamma^{sd}_{ja, jb} = \Gamma_0^{sd}(u_{ja} u_{jb} - v_{ja} v_{jb})Q_{ja, jb}^{(2)}$$

$$\Lambda^{dd}_{ja, jb, j_c} = -2\Lambda_0^{dd} \sqrt{\frac{5}{2j_c + 1}}(u_{ja} v_{jc} + v_{ja} u_{jc})Q_{ja, j_c}^{(2)}(u_{jb} v_{jc} + v_{jb} u_{jc})Q_{jb, j_c}^{(2)}$$

- **f-boson part:**

$$A^f_j = -A_0^f \sqrt{2j + 1}$$

$$\Gamma^{ff}_{ja, jb} = \Gamma_0^{ff}(u_{ja} u_{jb} - v_{ja} v_{jb})Q_{ja, jb}^{(2)}$$

$$\Lambda^{ff}_{ja, jb, j'_c} = -2\Lambda_0^{ff} \sqrt{\frac{7}{2j'_c + 1}}(u_{ja} v_{jc} + v_{ja} u_{jc})Q_{ja, j'_c}^{(2)}(u_{jb} v_{jc} + v_{jb} u_{jc})Q_{jb, j'_c}^{(2)}$$

- **sdf-boson part:**

$$\Gamma^{sf}_{ja, j'_b} = \Gamma_0^{sf}(u_{ja} u_{j'_b} - v_{ja} v_{j'_b})Q_{ja, j'_b}^{(3)}$$

$$\Lambda^{df}_{ja, j'_b, j_c} = -2\Lambda_0^{df} \sqrt{\frac{7}{2j_c + 1}}(u_{ja} v_{jc} + v_{ja} u_{jc})Q_{ja, j'_b}^{(2)}(u_{j'_b} v_{jc} + v_{j'_b} u_{jc})Q_{jb, j'_c}^{(3)}$$

Parameters:

- $\Gamma_0^{sd}, \Gamma_0^{ff}, \Lambda_0^{dd}, \Lambda_0^{ff}, A_0^d, A_0^f$

- $\Gamma_0^{sf}, \Lambda_0^{df}$

for each of unique-parity ($i_{13/2}$) and normal-parity ($p_{1/2, 3/2} f_{5/2, 7/2} h_{9/2}$) configs.