Measuring quark polarizations at ATLAS and CMS

Yevgeny Kats

Based on:

Motivation

ATLAS and CMS already measure **top quark** polarization.

single top production

\[
\frac{1}{\sigma} \frac{d\sigma}{d(\cos\theta^*_W)}
\]

top pair production

\[
\frac{1}{\sigma} \frac{d\sigma}{d(\cos\theta^*_t)}
\]

EW process → polarized

\[
q \rightarrow \mu + \text{jets, } t + \bar{t}, \text{ 19.7 fb}^{-1} \text{ (8 TeV)}
\]

QCD process → unpolarized

\[
b \rightarrow g \rightarrow t + \bar{t}
\]

etc.
Motivation

ATLAS and CMS already measure top quark polarization.

single top production

EW process \rightarrow polarized

top pair production

QCD process \rightarrow unpolarized

Polarization of tops from new physics processes will teach us about their production mechanism.
Motivation

ATLAS and CMS already measure **top quark** polarization.

Can we do analogous measurements for the **other quarks**?

Polarization of tops from **new physics** processes will teach us about their production mechanism.

Can we do analogous measurements for the **other quarks**?
For heavy quarks, $m_q \gg \Lambda_{\text{QCD}}$

- The quark is carried by a very energetic heavy-flavored hadron.

EPJC 29, 463 (2003) [hep-ex/0210031]
Heavy quarks \((b, c)\)

For heavy quarks, \(m_q \gg \Lambda_{\text{QCD}}\)

- The quark is carried by a very energetic heavy-flavored hadron.
- When it is a baryon, \(\mathcal{O}(1)\) fraction of the polarization is expected to be retained.

Mannel and Schuler, PLB 279, 194 (1992)
EPJC 29, 463 (2003) [hep-ex/0210031]
Heavy quarks (b, c)

For heavy quarks, $m_q \gg \Lambda_{\text{QCD}}$

- The quark is carried by a very energetic heavy-flavored hadron.
- When it is a baryon, $\mathcal{O}(1)$ fraction of the polarization is expected to be retained.

Mannel and Schuler, PLB 279, 194 (1992)

Evidence observed at LEP via $\Lambda_b (\approx bud)$ baryons in $Z \rightarrow b\bar{b}$.

\[
\mathcal{P}(\Lambda_b) = -0.23^{+0.24}_{-0.20}^{+0.08}_{-0.07} \quad \text{(ALEPH)} \quad \text{PLB 365, 437 (1996)}
\]

\[
\mathcal{P}(\Lambda_b) = -0.49^{+0.32}_{-0.30} \pm 0.17 \quad \text{(DELPHI)} \quad \text{PLB 474, 205 (2000)}
\]

\[
\mathcal{P}(\Lambda_b) = -0.56^{+0.20}_{-0.13} \pm 0.09 \quad \text{(OPAL)} \quad \text{PLB 444, 539 (1998) [hep-ex/9808006]}
\]

EPJC 29, 463 (2003) [hep-ex/0210031]
b-quark polarization retention

chromomagnetic moment

\[\mu_b \propto \frac{1}{m_b} \]

\[m_b \gg \Lambda_{\text{QCD}} \]

b spin preserved during hadronization
b-quark polarization retention

- Chromomagnetic moment:
 \[\mu_b \propto \frac{1}{m_b} \]
 \[m_b \gg \Lambda_{\text{QCD}} \]
 \[b \text{ spin } \text{preserved} \]
 \[\text{during hadronization} \]

- b spin preserved also during lifetime

- b spin oscillates during lifetime

- Σ_b, Σ^*_b

- Λ_b sample contaminated by $\Sigma_b^{(*)} \to \Lambda_b \pi$

- Fragmentation fraction $f(b \to \text{baryons}) \approx 8\%$
\[\Lambda c \]

\[m_c \gg \Lambda_{QCD} \]
as a rough approximation

\[c \text{ spin } \text{preserved} \]
during hadronization

\[\mu_c \propto \frac{1}{m_c} \]

\[c \text{ spin } \text{preserved} \]
also during lifetime

\[c \text{ spin } \text{oscillates} \]
during lifetime

\[\Sigma_c(2455) \]

\[\Sigma_c(2520) \]

\[\Sigma_c, \Sigma_c^* \]

\[\Lambda_c \text{ sample contaminated by } \Sigma_c^{(*)} \rightarrow \Lambda_c \pi \]

fragmentation fraction \[f(c \rightarrow \text{baryons}) \approx 6\% \]
Dominant polarization loss effect

\[\Sigma_b^{(*)} \rightarrow \Lambda_b \pi \text{ decays} \]

\[r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)} = ? \]
b-quark polarization retention

Dominant polarization loss effect

\[\Sigma_b^{(*)} \rightarrow \Lambda_b \pi \text{ decays} \]

\[
\begin{align*}
|\Lambda_{b,+1/2}\rangle & = |b_{+1/2}\rangle |S_0\rangle \\
|\Sigma_{b,+1/2}\rangle & = -\sqrt{\frac{1}{3}} |b_{+1/2}\rangle |T_0\rangle + \sqrt{\frac{2}{3}} |b_{-1/2}\rangle |T_{+1}\rangle \\
|\Sigma_{b,+1/2}^*\rangle & = \sqrt{\frac{2}{3}} |b_{+1/2}\rangle |T_0\rangle + \sqrt{\frac{1}{3}} |b_{-1/2}\rangle |T_{+1}\rangle \\
|\Sigma_{b,+3/2}^*\rangle & = |b_{+1/2}\rangle |T_{+1}\rangle \\
\end{align*}
\]

Production as a \(b \) spin eigenstate.

Decay as a \(\Sigma_b \) or \(\Sigma_b^* \) mass eigenstate.

\[
\text{e.g.} \quad |b_{+1/2}\rangle |T_0\rangle = -\sqrt{\frac{1}{3}} \left| \Sigma_{b,+1/2} \right\rangle + \sqrt{\frac{2}{3}} \left| \Sigma_{b,+1/2}^* \right\rangle
\]

\[
\begin{align*}
\mathcal{P}(\Lambda_b) & = r \mathcal{P}(b) \\
\text{“diquarks”} \quad S & \quad \text{spin-0 isosinglet} \\
T & \quad \text{spin-1 isotriplet}
\end{align*}
\]
b-quark polarization retention

Dominant polarization loss effect

\[\Sigma_b^{(*)} \rightarrow \Lambda_b \pi \text{ decays} \]

- \[\Lambda_{b,+1/2} = |b_{+1/2}\rangle |S_0\rangle \]
- \[|\Sigma_{b,+1/2}\rangle = -\sqrt{\frac{1}{3}} |b_{+1/2}\rangle |T_0\rangle + \sqrt{\frac{2}{3}} |b_{-1/2}\rangle |T_{+1}\rangle \]
- \[|\Sigma^*_{b,+1/2}\rangle = \sqrt{\frac{2}{3}} |b_{+1/2}\rangle |T_0\rangle + \sqrt{\frac{1}{3}} |b_{-1/2}\rangle |T_{+1}\rangle \]
- \[|\Sigma^*_{b,+3/2}\rangle = |b_{+1/2}\rangle |T_{+1}\rangle \]

Production as a \(b \) spin eigenstate.

Decay as a \(\Sigma_b \) or \(\Sigma_b^* \) mass eigenstate.

\[|b_{+1/2}\rangle |T_{0}\rangle = -\sqrt{\frac{1}{3}} |\Sigma_{b,+1/2}\rangle + \sqrt{\frac{2}{3}} |\Sigma_{b,+1/2}^*\rangle \]

“diquarks”

- \(S \) \hspace{1cm} \(T \)
 - spin-0 isosinglet
 - spin-1 isotriplet

\[A = \frac{\text{prob}(\Sigma_b^{(*)})}{\text{prob}(\Lambda_b)} = 9 \frac{\text{prob}(T)}{\text{prob}(S)} \]

\[w_1 = \frac{\text{prob}(T_{+1})}{\text{prob}(T)} \text{ along axis of fragmentation} \]

Falk and Peskin

PRD 49, 3320 (1994)

[hep-ph/9308241]
b-quark polarization retention

Dominant polarization loss effect

\[\Sigma_b^{(*)} \rightarrow \Lambda_b \pi \] decays

\[
\begin{align*}
|\Lambda_{b,+1/2}\rangle &= |b_{+1/2}\rangle |S_0\rangle \\
|\Sigma_{b,+1/2}\rangle &= -\sqrt{\frac{1}{3}} |b_{+1/2}\rangle |T_0\rangle + \sqrt{\frac{2}{3}} |b_{-1/2}\rangle |T_{+1}\rangle \\
|\Sigma_{b,+1/2}^*\rangle &= \sqrt{\frac{2}{3}} |b_{+1/2}\rangle |T_0\rangle + \sqrt{\frac{1}{3}} |b_{-1/2}\rangle |T_{+1}\rangle \\
|\Sigma_{b,+3/2}^*\rangle &= |b_{+1/2}\rangle |T_{+1}\rangle
\end{align*}
\]

Production as a \(b \) spin eigenstate.
Decay as a \(\Sigma_b \) or \(\Sigma_b^* \) mass eigenstate.

e.g. \[|b_{+1/2}\rangle |T_0\rangle = -\sqrt{\frac{1}{3}} |\Sigma_{b,+1/2}\rangle + \sqrt{\frac{2}{3}} |\Sigma_{b,+1/2}^*\rangle \]

\[r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)} = ? \]

“diquarks”

\[
\begin{align*}
S &\quad \text{spin-0 isosinglet} \\
T &\quad \text{spin-1 isotriplet}
\end{align*}
\]

\[
A = \frac{\text{prob}(\Sigma_b^{(*)})}{\text{prob}(\Lambda_b)} = 9 \frac{\text{prob}(T)}{\text{prob}(S)}
\]

\[w_1 = \frac{\text{prob}(T_{+1})}{\text{prob}(T)} \quad \text{along axis of fragmentation} \]

\[r \approx \frac{1 + (1 + 4w_1)A/9}{1 + A} \]
b-quark polarization retention

More precisely, need to account for $\Sigma_b^{(*)}$ widths (interference).

Can do it by considering $\Sigma_b^{(*)}$ propagation:

$$|E\rangle \propto \int d\cos \theta \, d\phi \, \sum_{J,M} \langle J, M | \frac{1}{2}, +\frac{1}{2}; 1, m \rangle \frac{p_\pi(E)}{E - m_J + i\Gamma(E)/2} \times \sum_s \langle \frac{1}{2}, s; 1, M - s | J, M \rangle Y_1^{M-s}(\theta, \phi) \langle \theta, \phi | s \rangle$$

$$\rho(E) \propto \text{Tr}_{\theta,\phi} \langle E \rangle \langle E |$$

$$\rho \propto \int_{m_{\Lambda_b} + m_\pi}^{\infty} dE \, p_\pi(E) \exp \left(-E/T \right) \rho(E)$$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_{Σ_b}</td>
<td>7 ± 3</td>
</tr>
<tr>
<td>$\Gamma_{\Sigma_b^*}$</td>
<td>9 ± 2</td>
</tr>
<tr>
<td>$m_{\Sigma_b^*} - m_{\Sigma_b}$</td>
<td>21 ± 2</td>
</tr>
</tbody>
</table>

b-quark polarization retention

More precisely, need to account for $\Sigma_b^{(*)}$ widths (interference).

\begin{align*}
r \equiv \frac{\mathcal{P}(\Lambda_b)}{\mathcal{P}(b)} & \approx \frac{1 + (0.23 + 0.38w_1)A}{1 + A}
\end{align*}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_{Σ_b}</td>
<td>7 ± 3</td>
</tr>
<tr>
<td>$\Gamma_{\Sigma_b^*}$</td>
<td>9 ± 2</td>
</tr>
<tr>
<td>$m_{\Sigma_b^*} - m_{\Sigma_b}$</td>
<td>21 ± 2</td>
</tr>
</tbody>
</table>
Directional dependence, since

$$r_L \approx \frac{1 + (0.23 + 0.38w_1)A}{1 + A}$$

$$r_T \approx \frac{1 + (0.62 - 0.19w_1)A}{1 + A}$$

holds along the fragmentation axis.

$$w_1 = \frac{\text{prob}(T_{\pm 1})}{\text{prob}(T)}$$
Heavy quark polarization retention

\[r_L \approx \frac{1 + (0.23 + 0.38w_1)A}{1 + A} \]

\[r_T \approx \frac{1 + (0.62 - 0.19w_1)A}{1 + A} \]

\[A = \frac{\text{prob}(\Sigma_b^{(*)})}{\text{prob}(\Lambda_b)} = 9 \frac{\text{prob}(T)}{\text{prob}(S)} \]

\[w_1 = \frac{\text{prob}(T_{\pm 1})}{\text{prob}(T)} \]

What is known about \(A \) and \(w_1 \) (for both \(b \) and \(c \) quarks)?
Heavy quark polarization retention

\[r_L \approx \frac{1 + (0.23 + 0.38w_1)A}{1 + A} \]
\[r_T \approx \frac{1 + (0.62 - 0.19w_1)A}{1 + A} \]

\[A = \frac{\text{prob}(\Sigma_b^\ast)}{\text{prob}(\Lambda_b)} = 9 \frac{\text{prob}(T)}{\text{prob}(S)} \]
\[w_1 = \frac{\text{prob}(T_{\pm 1})}{\text{prob}(T)} \]

What is known about \(A \) and \(w_1 \) (for both \(b \) and \(c \) quarks)?

Pythia tunes \[0.24 \lesssim A \lesssim 0.45 \] (based on light hadron data)
DELPHI (LEP) \[1 \lesssim A \lesssim 10 \ (b) \quad w_1 = -0.36 \pm 0.30 \pm 0.30 \ (b) \]
DELPHI-95-107

E791 \[A \approx 1.1 \ (c) \]
PLB 379, 292 (1996)

CLEO (CESR) \[w_1 = 0.71 \pm 0.13 \ (c) \]
PRL 78, 2304 (1997)

Statistical hadronization \[A \approx 2.6 \ (b \text{ and } c) \]
review: PLB 678, 350 (2009)

Adamov & Goldstein \[A \approx 6 \ (b \text{ and } c) \quad w_1 \approx 0.41 \ (b), 0.39 \ (c) \]
PRD 64, 014021 (2001)
Heavy quark polarization retention

\[r_L \approx \frac{1 + (0.23 + 0.38w_1)A}{1 + A} \]

\[r_T \approx \frac{1 + (0.62 - 0.19w_1)A}{1 + A} \]

\[A = \frac{\text{prob} \left(\Sigma_b^{(*)} \right)}{\text{prob}(\Lambda_b)} = 9 \frac{\text{prob}(T)}{\text{prob}(S)} \]

\[w_1 = \frac{\text{prob}(T_{\pm 1})}{\text{prob}(T)} \]

What is known about \(A \) and \(w_1 \) (for both \(b \) and \(c \) quarks)?

Overall, \(A \sim \mathcal{O}(1), \ 0 \leq w_1 \leq 1 \) \(\Rightarrow r_L, r_T \sim \mathcal{O}(1) \)

\(r_L \) consistent with \(\Lambda_b \) results from LEP
s-quark polarization retention?

➢ Cannot argue for polarization retention using heavy-quark limit.
 Cannot argue for polarization loss either!
s-quark polarization retention!

- Cannot argue for polarization retention using heavy-quark limit. Cannot argue for polarization loss either!

- Λ polarization studies were done in Z decays at LEP.

CERN-OPEN-99-328

EPJC 2, 49 (1998) [hep-ex/9708027]
Cannot argue for polarization retention using heavy-quark limit. Cannot argue for polarization loss either!

Λ polarization studies were done in Z decays at LEP. For $z > 0.3$:

$$\mathcal{P}(\Lambda) = -0.31 \pm 0.05$$ \textbf{ALEPH, CERN-OPEN-99-328}

$$\mathcal{P}(\Lambda) = -0.33 \pm 0.08$$ \textbf{OPAL, EPJC 2, 49 (1998) [hep-ex/9708027]}

Contributions from all quark flavors are included. For strange quarks only (non-negligible modeling uncertainty):

$$-0.65 \lesssim \mathcal{P}(\Lambda) \lesssim -0.49$$

Sizable polarization retention!
Nice sources of polarized quarks

Top pair production \(pp \rightarrow t\bar{t} \)

- \(t \rightarrow W^+ b \) produces polarized \(b \) quarks.
 \(\leftarrow c\bar{s}, u\bar{d} \) produces polarized \(c, s, u, d \) quarks.

- Easy to select a clean \(t\bar{t} \) sample (e.g., in lepton + jets).
- Kinematic reconstruction and charm tagging enable studying the different quark flavors separately.
- Statistics in Run 2 is as large as in \(Z \) decays at LEP.
Nice sources of polarized quarks

Top pair production $pp \rightarrow t\bar{t}$

- $t \rightarrow W^+ b$ produces polarized b quarks.
 - $c\bar{s}$, $u\bar{d}$ produces polarized c, s, u, d quarks.
- Easy to select a clean $t\bar{t}$ sample (e.g., in lepton + jets).
- Kinematic reconstruction and charm tagging enable studying the different quark flavors separately.
- Statistics in Run 2 is as large as in Z decays at LEP.

W+c production $pp \rightarrow W^- c$

- Polarized c quarks.
Nice sources of polarized quarks

Top pair production \(pp \rightarrow t\bar{t} \)

- \(t \rightarrow W^+ b \) produces polarized \(b \) quarks.
 - \(c\bar{s}, u\bar{d} \) produces polarized \(c, s, u, d \) quarks.
- Easy to select a clean \(t\bar{t} \) sample (e.g., in lepton + jets).
- Kinematic reconstruction and charm tagging enable studying the different quark flavors separately.
- Statistics in Run 2 is as large as in \(Z \) decays at LEP.

\(W+c \) production \(pp \rightarrow W^- c \)

- Polarized \(c \) quarks.
- Order-of-magnitude higher statistics than \(t\bar{t} \), although backgrounds are higher too.
Measurement of s polarization in $t\bar{t}$

Main steps:

- Typical single-lepton $t\bar{t}$ selection
- Typical kinematic reconstruction and global event interpretation
- Charm tagging
- Λ reconstruction and polarization measurement
In the Λ rest frame, the decay $\Lambda \rightarrow p \pi^-$ has the angular distribution

$$\frac{1}{\Gamma} \frac{d\Gamma}{d \cos \theta} = \frac{1}{2} \left(1 + \alpha \mathcal{P}(\Lambda) \cos \theta \right)$$

where

$$\alpha = 0.642 \pm 0.013$$
Measurement of s polarization in $t\bar{t}$

Statistical precision of roughly 16% possible at ATLAS/CMS in Run 2 (with 100 fb$^{-1}$ of data).
Measurement of c polarization in $t\bar{t}$

Main steps:

- Typical single-lepton $t\bar{t}$ selection
- Typical kinematic reconstruction and global event interpretation
- Λ_c reconstruction and polarization measurement
Measurement of c polarization in $t\bar{t}$

<table>
<thead>
<tr>
<th>Selection</th>
<th>Expected events</th>
<th>Purity (example)</th>
<th>$\Delta A_{FB}/A_{FB}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>$1.7 \times 10^6 \ t\bar{t} + \mathcal{O}(10^5)$ bkg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Lambda^+_c \rightarrow pK^-\pi^+$</td>
<td>$810 \times (\epsilon_{\Lambda_c}/25%)$</td>
<td>20%</td>
<td>26%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11%</td>
</tr>
</tbody>
</table>

Statistical precision of order 10% possible at ATLAS/CMS in Run 2 (with 100 fb$^{-1}$ of data).
Measurement of b polarization in $t\bar{t}$

Main steps:
- Typical single-lepton $t\bar{t}$ selection (w/soft-muon b tag)
- Typical kinematic reconstruction and global event interpretation
- $Λ_b$ reconstruction (using inclusive, semi-inclusive or exclusive approach) and polarization measurement
Measurement of b polarization in $t\bar{t}$

Statistical precision of about 10% possible at ATLAS/CMS in Run 2 (with 100 fb$^{-1}$ of data)

<table>
<thead>
<tr>
<th>Selection</th>
<th>Expected events</th>
<th>Purity (example)</th>
<th>$\frac{\Delta A_{FB}}{A_{FB}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>$3 \times 10^6 \ t\bar{t} + \mathcal{O}(10^6)$ bkg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft-muon b tagging</td>
<td>$5 \times 10^5 \ t\bar{t} + \mathcal{O}(10^4)$ bkg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusive</td>
<td>$34,400$</td>
<td>$\mathcal{O}(f_{\text{baryon}})$ (e.g., 7%)</td>
<td>$\pm 7%$</td>
</tr>
<tr>
<td>Semi-inclusive</td>
<td>$2300 \times (\epsilon_{\Lambda}/30%)$</td>
<td>$70%$</td>
<td>$\pm 8%$</td>
</tr>
<tr>
<td>Exclusive</td>
<td>$1040 \times (\epsilon_{\Lambda_c}/25%)$</td>
<td>$30%$</td>
<td>$\pm 19%$</td>
</tr>
</tbody>
</table>

$r_L = 0.6$
Measurement of c polarization in $W+c$

ATLAS and CMS measured $W+c$ cross section at 7 TeV

ATLAS, JHEP 1405, 068 (2014) [arXiv:1402.6263]

in particular by relying on the decays

$$D^+ \rightarrow K^- \pi^+ \pi^+$$

Similar to our decay of interest

$$\Lambda^+_c \rightarrow pK^- \pi^+$$

(See backup slides for more details.)
Measurement of c polarization in $W+c$

ATLAS and CMS measured $W+c$ cross section at 7 TeV

ATLAS, JHEP 1405, 068 (2014) [arXiv:1402.6263]

in particular by relying on the decays

$$D^+ \rightarrow K^- \pi^+ \pi^+$$

Similar to our decay of interest

$$\Lambda_c^+ \rightarrow p K^- \pi^+$$

(See backup slides for more details.)
Measurement of b polarization in QCD events

Inclusive QCD production: $pp \rightarrow b\bar{b} + X$

- Enormous cross section, but **unpolarized** at the leading order.
Measurement of b polarization in QCD events

Inclusive QCD production: $pp \rightarrow b \bar{b} + X$

- Enormous cross section, but **unpolarized** at the leading order.
- At NLO \rightarrow **transverse** polarization
 (an opportunity to measure r_T)
 \rightarrow strong kinematic dependence
 \rightarrow suppressed at high momenta $P(b) \sim \alpha_s \frac{m_b}{p_b}$

Bernreuther, Brandenburg, Uwer, PLB 368, 153 (1996)
Dharmaratna and Goldstein, PRD 53, 1073 (1996)

FIG. 7. Polarization of up, strange, charm, and bottom quarks at the subprocess CM momentum of (a) 13 GeV/c for gluon fusion and (b) 9 GeV/c for annihilation. Other parameters are identical to Fig. 5.
Measurement of b polarization in QCD events

Inclusive QCD production: $pp \rightarrow b\bar{b} + X$

- Enormous cross section, but **unpolarized** at the leading order.
- At NLO \rightarrow **transverse** polarization

 (an opportunity to measure r_T)

 \rightarrow strong kinematic dependence
 \rightarrow suppressed at high momenta
 $\mathcal{P}(b) \sim \alpha_s \frac{m_b}{p_b}$

Existing LHCb analysis:

Measurements of the $\Lambda_b^0 \rightarrow J/\psi \Lambda$

 decay amplitudes and the Λ_b^0

 polarisation in pp collisions at

 $\sqrt{s} = 7$ TeV

PLB 724, 27 (2013)
[arXiv:1302.5578]

$\mathcal{P}(\Lambda_b) = 0.06 \pm 0.07 \pm 0.02$

Suboptimal due to inclusiveness over the kinematics.

FIG. 7. Polarization of up, strange, charm, and bottom quarks at the subprocess CM momentum of (a) 13 GeV/c for gluon fusion and (b) 9 GeV/c for annihilation. Other parameters are identical to Fig. 5.
Measuring A directly

A is simply the ratio of the $\Sigma_b^{(*)}$ and direct Λ_b yields, independent of the b polarization:

$$A = \frac{\text{prob} \left(\Sigma_b^{(*)} \right)}{\text{prob} \left(\Lambda_b \right)} = 9 \frac{\text{prob}(T)}{\text{prob}(S)}$$

Can be measured by any experiment that can reconstruct

$$\Sigma_b^{(*)\pm,0} \to \Lambda_b \pi^{\pm,0}$$

In particular, LHCb, ATLAS, CMS in inclusive QCD samples.

Could have been done even at the Tevatron.

CDF, PRD 85, 092011 (2012) [arXiv:1112.2808]
Measuring A directly

A is simply the ratio of the $\Sigma_b^{(*)}$ and direct Λ_b yields, independent of the b polarization:

$$A = \frac{\text{prob} \left(\Sigma_b^{(*)} \right)}{\text{prob} \left(\Lambda_b \right)} = 9 \frac{\text{prob}(T)}{\text{prob}(S)}$$

Can be measured by any experiment that can reconstruct

$$\Sigma_b^{(*)\pm,0} \rightarrow \Lambda_b \pi^{\pm,0}$$

In particular, LHCb, ATLAS, CMS in inclusive QCD samples.

Same holds for

$$\Sigma_c^{(*)++,+,0} \rightarrow \Lambda_c^+ \pi^{\pm,0}$$

where B factories can also help.

Belle, PRD 89, 091102 (2014) [arXiv:1404.5389]
Measuring w_1 directly

The angular distribution of $\Sigma_b^{(*)} \rightarrow \Lambda_b\pi$ is sensitive to w_1, independent of the b polarization:

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos \theta} = \frac{1}{2} + \frac{9}{8} a \left(w_1 - \frac{2}{3} \right) \left(\cos^2 \theta - \frac{1}{3} \right)$$

where a is given in the plot.

Can be measured by any experiment that can reconstruct these decays (e.g., LHCb, ATLAS, CMS).

Same holds for $\Sigma_c^{(*)}$ and Λ_c.
Summary: motivated measurements

In $t\bar{t}$ production (ATLAS, CMS)
- Longitudinal Λ_b polarization in b jets $\rightarrow r_L$ for bottom
- Longitudinal Λ_c polarization in c jets $\rightarrow r_L$ for charm
- Longitudinal Λ polarization in s jets \rightarrow long. pol. FF for strange
- (far future) Longitudinal Λ polarization in u, d jets \rightarrow long. pol. FFs for up, down

In $W+c$ production (ATLAS, CMS, maybe LHCb)
- Longitudinal Λ_c polarization $\rightarrow r_L$ for charm
 (Esp. LHCb may also try separating out the $\Sigma_c^{(*)}$ contributions.)

In QCD production (LHCb, ATLAS, CMS)
- Transverse Λ_b (and Λ_c?) polarization
 as a function of the event kinematics $\rightarrow r_T$ for bottom (charm?)
Summary: motivated measurements

In QCD production (LHCb, ATLAS, CMS)

- $\Sigma_b^{(*)}$ yields (relative to direct Λ_b) $\rightarrow A$ for bottom
 and pion angular distribution $\rightarrow w_1$

- $\Sigma_c^{(*)}$ yields (relative to direct Λ_c) $\rightarrow A$ for charm
 and pion angular distribution $\rightarrow w_1$

In new-physics samples, once discovered (ATLAS, CMS)

- Measure quark polarizations \rightarrow learn about the new physics
 (Statistics will likely be a severe limitation.)

In $t\bar{t}$ and $W+c$ production in the long term (ATLAS, CMS, LHCb)

- Measurements of polarized fragmentation functions.

Thank You!
Supplementary Slides
Mass splittings and widths

bottom system

\[m_{\Lambda_b} = 5619.5 \pm 0.4 \text{ MeV} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_{\Sigma_b} - m_{\Lambda_b})</td>
<td>194 ± 2</td>
</tr>
<tr>
<td>(m_{\Sigma_b^*} - m_{\Lambda_b})</td>
<td>214 ± 2</td>
</tr>
<tr>
<td>(\Delta \equiv m_{\Sigma_b^*} - m_{\Sigma_b})</td>
<td>21 ± 2</td>
</tr>
<tr>
<td>(\Gamma_{\Sigma_b})</td>
<td>7 ± 3</td>
</tr>
<tr>
<td>(\Gamma_{\Sigma_b^*})</td>
<td>9 ± 2</td>
</tr>
</tbody>
</table>

charm system

\[m_{\Lambda_c} = 2286.5 \pm 0.2 \text{ MeV} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_{\Sigma_c} - m_{\Lambda_c})</td>
<td>167.4 ± 0.1</td>
</tr>
<tr>
<td>(m_{\Sigma_c^*} - m_{\Lambda_c})</td>
<td>231.9 ± 0.4</td>
</tr>
<tr>
<td>(\Delta \equiv m_{\Sigma_c^*} - m_{\Sigma_c})</td>
<td>64.5 ± 0.5</td>
</tr>
<tr>
<td>(\Gamma_{\Sigma_c})</td>
<td>2.2 ± 0.2</td>
</tr>
<tr>
<td>(\Gamma_{\Sigma_c^*})</td>
<td>15 ± 1</td>
</tr>
</tbody>
</table>
Measurement of b polarization in Z decays

Z production: $pp \rightarrow Z \rightarrow b\bar{b}$

- Longitudinally polarized b quarks (similar to $t\bar{t}$)
- Large cross section
 \[
 \frac{\sigma(pp \rightarrow Z \rightarrow b\bar{b})}{\sigma(pp \rightarrow t\bar{t} \rightarrow W^+W^-b\bar{b})} \sim 10
 \]
- Large QCD background (at 8 TeV, $S/B \approx 1/15$ even for $p_T^Z > 200$ GeV) dilutes the asymmetry.

Probably less effective than $t\bar{t}$.

Λ_b polarization measurement

Which Λ_b decay to use?

We picked semileptonic mode **inclusive** in charm hadrons (large BR, no hadronic uncertainties).
Λ₃b polarization measurement

Which Λ₃b decay to use?

We picked **semileptonic mode inclusive** in charm hadrons (large BR, no hadronic uncertainties).

Includes also:

\[\Lambda_b \rightarrow p \, D^0 \, \ell^- \, \bar{\nu}_\ell \] small contribution
Λ\(_b\) polarization measurement

For the inclusive semileptonic decays

\[Λ_b \rightarrow X_c \ell^- \bar{\nu} \]

Λ\(_b\) polarization is encoded in the angular distributions

\[\frac{1}{\Gamma_{Λ_b}} \frac{dΓ_{Λ_b}}{d \cos θ_i} = \frac{1}{2} \left(1 + α_i \mathcal{P}(Λ_b) \cos θ_i \right) \quad i = \ell \text{ or } ν \]

where

\[α_\ell = \frac{-\frac{1}{3} + 4x_c + 12x_c^2 - \frac{44}{3}x_c^3 - x_c^4 + 12x_c^2 \log x_c + 8x_c^3 \log x_c}{1 - 8x_c + 8x_c^3 - x_c^4 - 12x_c^2 \log x_c} \approx -0.26 \]

\[α_ν = 1 \]

\(\mathcal{O}(Λ_{QCD}/m_b) \) corrections are absent, and \(α_s \) corrections are few %.

Manohar, Wise
PRD 49, 1310 (1994)
[hep-ph/9308246]

Czarnecki, Jezabek, Korner, Kuhn, PRL 73, 384 (1994)
Czarnecki, Jezabek, NPB 427, 3 (1994)
Λ_b polarization measurement

\[\Lambda_b \rightarrow X_c \ell^- \bar{\nu} \quad (\text{BR} \approx 10\% \text{ per flavor}) \]

- **Soft-muon b tagging**
 - e.g. CMS-PAS-BTV-09-001

- **Neutrino reconstruction using...**
 - Λ_b mass constraint
 - Λ_b flight direction

 - Dambach, Langenegger, Starodumov

- **Neutrino A_{FB} measurement** (in the Λ_b rest frame)

- **Approaches regarding semileptonic B-meson background:**
 - **Inclusive** keep it
 - **Semi-inclusive** demand $\Lambda \rightarrow p\pi^- \pi^-$ among decay products
 - **Exclusive** demand a fully-reconstructible Λ_c decay

See paper for many additional details...
Λc polarization measurement

\[\Lambda_c^+ \rightarrow p K^- \pi^+ \] \hspace{1cm} (BR ≈ 6.7\%)

➢ Three tracks reconstructing the Λc mass.

➢ Backgrounds under the mass peak can be suppressed in various ways.

➢ Spin analyzing powers \(\alpha_i \) seem to be large for \(K^- \), small for \(p \) and \(\pi^+ \).

Also, \(\alpha_i \) can be determined (e.g., in LHCb) from a sample of \(\Lambda_c \)'s produced from inclusive \(b \)-hadron decays by calibrating on \(\Lambda_c^+ \rightarrow \Lambda \pi^+ \) (where \(\alpha_\Lambda = -0.91 \pm 0.15 \)).

NA32: Jeżabek, Rybicki, Ryłko, PLB 286, 175 (1992)

Precise values not essential for new physics samples if SM calibration samples are available.
Λ polarization measurement

\[\Lambda \rightarrow p \pi^- \quad (\text{BR} \approx 64\%) \]

- Pair of tracks from a highly displaced vertex reconstructing the Λ mass.
- Spin analyzing power \(\alpha \approx 0.64 \)
- ATLAS and CMS already have experience with Λ’s

ATLAS

\(\sqrt{s} = 7 \text{ TeV} \)

\[\int L \text{dt} = 190 \mu \text{b}^{-1} \]

CMS

\(\sqrt{s} = 7 \text{ TeV} \)

- Yield: \(1460 \times 10^3 \)
- Mean: 1116.0 MeV/c^2
- Avg \(\sigma \): 3.4 MeV/c^2

PRD 85, 012001 (2012) [arXiv:1111.1297]

JHEP 05, 064 (2011) [arXiv:1102.4282]
Measurement of c polarization in $W+c$

ATLAS and CMS measured $W+c$ cross section at 7 TeV

ATLAS, JHEP 1405, 068 (2014) [arXiv:1402.6263]

in particular by relying on the decays

$D^+ \rightarrow K^- \pi^+ \pi^+$

Similar to our decay of interest

$\Lambda_c^+ \rightarrow pK^- \pi^+$
Example: $D^+ \rightarrow K^- \pi^+ \pi^+$ in ATLAS

ATLAS, JHEP 1405, 068 (2014) [arXiv:1402.6263]
Example: $D^+ \rightarrow K^- \pi^+ \pi^+$ in ATLAS

ATLAS, JHEP 1405, 068 (2014) [arXiv:1402.6263]
Example: \(D^+ \rightarrow K^- \pi^+ \pi^+ \) in ATLAS

ATLAS, JHEP 1405, 068 (2014) [arXiv:1402.6263]
Example: $D^+ \rightarrow K^- \pi^+ \pi^+$ in CMS

$\Lambda_c^+ \to pK^-\pi^+$ vs. $D^+ \to K^-\pi^+\pi^+$

Same signature (3-prong displaced vertex, mass peak), but:

- The $\Lambda_c^+ \to pK^-\pi^+$ signal peak is smaller:

$$\frac{f(c \to D^+) \mathcal{B}(D^+ \to K^-\pi^+\pi^+)}{f(c \to \Lambda_c^+) \mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)} \approx 5.3$$

while background is roughly the same.

Ambiguity resolution: in the lab frame, $|\vec{p}(p)| > |\vec{p}(\pi^+)|$.

- The Λ_c^+ vertex is less displaced:

$$\tau_{\Lambda_c^+} \approx \frac{\tau_{D^0}}{2} \approx \frac{\tau_{D_s^+}}{2.5} \approx \frac{\tau_{D^+}}{5}$$

E.g., in CMS analysis, < 20% of events had a good secondary vertex
(events contain about 61% D^0, 24% D^+, 8% D_s^+, 6% Λ_c^+)
Improvements for $W+c$ in Run 2

- **Statistics x 60** (cross section x 3, luminosity x 20)

 (S/B remains similar because cross sections increase by similar factors.)

- **Upgrades to ATLAS and CMS pixel detectors**

 ATLAS: installed IBL

 Innermost layer at: **3.3 cm** (vs. **5.0 cm in Run 1**)

 Smaller pixel size: **50 x 250** (vs. **50 x 400**) μm2

 CMS: pixel detector upgrade in winter 2016-2017

 Innermost layer at: **3.0 cm** (vs. **4.4 cm now**)

 Pixel size unchanged: **100 x 150 μm2**
Backgrounds: ATLAS D^+ example

ATLAS, JHEP 1405, 068 (2014) [arXiv:1402.6263]
\(\Lambda_c \) polarization backgrounds in \(W+c \)

PEAKING COMPONENTS (REAL \(\Lambda_c \))

- \(c \)'s in *multijet*: unpolarized
- \(W^+ \rightarrow c\bar{s} \) in *top*: polarized like the signal
- \(b \)'s in *top, W+b\bar{b}, multijet*: polarization due to electroweak \(b \rightarrow \Lambda_c, \Sigma_c^{(*)} \)

 Control region with highly-displaced \(\Lambda_c \)'s (\(\tau_b \approx 7 \tau_{\Lambda_c} \)).

- \(W+c\bar{c} \): can be estimated from the wrong-sign sample

SMOOTH COMPONENTS (FAKE \(\Lambda_c \))

At the very least, can be extrapolated from sidebands (up to a certain systematic uncertainty).
A variable sensitive to the polarization:

$$A_{FB} = \frac{N(\cos \theta_{K^-} > 0) - N(\cos \theta_{K^-} < 0)}{N}$$

Statistical uncertainty:

$$\sigma(A_{FB}) = \sqrt{\frac{1 - A_{FB}^2}{N}} \approx \frac{1}{\sqrt{N}}$$

The signal contribution:

$$A_{FB,S} = \frac{\alpha_{K^-} P(\Lambda_c) S}{2N}$$

Significance of observing non-zero $P(c)$:

$$\frac{|A_{FB,S}|}{\sigma(A_{FB})} = \frac{|\alpha_{K^-} P(\Lambda_c)|}{2\frac{S}{\sqrt{N}}}$$
Statistical precision for $W+c$ in Run 2

A ballpark figure

➢ Start with the ATLAS D^+ peak.
➢ Account for the difference between the $D^+ \rightarrow K^-\pi^+\pi^+$ and $\Lambda_c^+ \rightarrow pK^-\pi^+$ rates.
➢ Assume Run 2 statistics (100 fb$^{-1}$)

Without the displacement issue, $S/\sqrt{N} \approx 47$.
For, e.g., $|\alpha_K-P(\Lambda_c)| = 0.4$, this gives 11% precision.

Suppose that relaxed displacement requirements increase N by a factor of 2 while still losing 1/2 of S.
Still, 3σ significance for observing non-zero $P(c)$.
Cannot use decays of protons or neutrons, but can again consider the $\Lambda \approx sud$.

Naïve quark model: all the Λ spin is on the s ☹

Nucleon DIS + flavor SU(3): u and d carry about -20% each ☑

Burkardt and Jaffe, PRL 70, 2537 (1993) [hep-ph/9302232]

Further inputs possible in the future from:

• Polarized DIS and polarized pp collisions
 e.g., COMPASS, EPJC 64, 171 (2009)
 Deng (STAR), Phys.Part.Nucl. 45, 73 (2014)

• Lattice QCD
 QCDSF, PLB 545, 112 (2002) [hep-lat/0208017]
 CSSM and QCDSF/UKQCD, PRD 90, 014510 (2014) [arXiv:1405.3019]
 Chambers et al., PRD 92, 114517 (2015) [arXiv:1508.06856]
Cannot use decays of protons or neutrons, but can again consider the $\Lambda (\approx sud)$.

Naïve quark model: all the Λ spin is on the s 😞

Nucleon DIS + flavor SU(3): u and d carry about -20% each 😊

Burkardt and Jaffe, PRL 70, 2537 (1993) [hep-ph/9302232]

Studies of u, d jets in $t\bar{t}$ samples will require much more statistics than s, also because:

- No u or d tagging; c-tag veto only partially effective
 (Can define separate u and d samples, contaminated by c and s respectively, using W_{leptonic} charge.)
- Fragmentation fractions of u, $d \rightarrow \Lambda$ smaller than $s \rightarrow \Lambda$
New physics example

Suppose a jets + MET excess is being attributed to:

\[pp \rightarrow \tilde{s}_R \tilde{s}_R^* \]
\[\tilde{s}_R \rightarrow s \tilde{\chi}_1^0 \]

\(m \) (GeV)

\(\tilde{s}_R \)
RH strange squark

\(200 \)

\(\tilde{\chi}_1^0 \)
bino (stable)

\(150 \)
New physics example

Suppose a jets + MET excess is being attributed to:

\[p p \rightarrow \tilde{s}_R \tilde{s}_R^* \]

\[\tilde{s}_R \rightarrow s \tilde{\chi}^0_1 \]

This scenario was barely beyond the reach of Run 1.

PRD 90, 052008 (2014) [arXiv:1407.0608]
New physics example

Suppose a jets + MET excess is being attributed to:

\[pp \rightarrow \tilde{s}_R \tilde{s}_R^* \]
\[\tilde{s}_R \rightarrow s \tilde{\chi}_1^0 \]

This scenario was barely beyond the reach of Run 1.

*The masses of interest are unfortunately not shown.

JHEP 06, 055 (2014) [arXiv:1402.4770]

CMS-PAS-SUS-13-009
New physics example

Suppose a jets + MET excess is being attributed to:

\[pp \rightarrow \tilde{s}_R \tilde{s}_R^* \]
\[\tilde{s}_R \rightarrow s \tilde{\chi}_1^0 \]

Test this interpretation by measuring the \(s \)-quark polarization.

Rough estimate (see paper for details):
for 3 ab\(^{-1}\) of 14 TeV data: statistical precision of better than 30%
(even without optimization of selection cuts, without accounting for the expected detector upgrades, and without combining ATLAS and CMS)