Decay modes of resonant and non-resonant continuum states of 6He

Yuma Kikuchi (Osaka City University, RIKEN)

in collaboration with
T. Myo (Osaka Inst. Tech.), K. Kato (Hokkaido Univ.), K. Ikeda (RIKEN),
K. Ogata (RCNP), T. Matsumoto (Kyushu Univ.), and M. Kosho (RCNP)
The Coulomb breakup reaction cross sections of halo nuclei show low-lying enhancements above the breakup thresholds. It has been expected that the weakly-bound halo neutrons are responsible for these low-lying enhancements. These breakup cross sections can be understood by the transitions into non-resonant continuum states.

Observed peak structures in breakup reactions of halo nuclei

11Be breakup

6He breakup
Observed peak structures in breakup reactions of halo nuclei

- For one-neutron halo nuclei, the Coulomb breakup is a powerful tool to investigate their ground-state structures.
- The E1 transition strength can be understood by the direct breakup process into non-resonant continuum states.
- The shape of the peak reflects the spatial extension of a halo neutron, which is related to its separation energy and the ground-state configuration.

\[
\frac{dB(E1)}{dE_x} \propto \left| \langle \exp(i\mathbf{q} \cdot \mathbf{r}) | \hat{O}(E1) | \Phi_{gs}(\mathbf{r}) \rangle \right|^2 \\
\langle \exp(i\mathbf{q} \cdot \mathbf{r}) | \hat{O}(E1) | \Phi_{gs}(\mathbf{r}) \rangle \propto \int e^{iqr^3} \Phi_{gs}(r) \, dr
\]
Observed peak structures in breakup reactions of halo nuclei

- For two-neutron halo nuclei, the situation becomes complicated.
- The peak cannot be reproduced by the direct breakup into phase space.
- The correlations in the continuum states are key to understand the Coulomb breakup reactions of two-neutron halo nuclei.
- In our calculations, no three-body resonance is obtained.
- What kinds of correlations make the low-lying enhancement?
- In the core+n+n systems, binary subsystems of core-n and n-n can form the resonances and/or virtual states.

YK et al., PRC 81, 044308 (2010).

YK et al., PRC 87, 034606 (2013).
Observed peak structures in breakup reactions of halo nuclei

- It is also interesting problem to investigate the nuclear breakup reaction of 6He.
- In the nuclear breakup, the 2^+ resonance at 1 MeV above the breakup threshold is populated.
- We can learn the structure of the excited state of two-neutron halo nuclei from this kind of reactions.
- The 2^+ resonance has a similar single-particle configuration to g.s.
- Is there any possibility of the measurement of the n-n correlation in the excited resonant states?

T. Matsumoto et al., PRC 82, 051602 (2010).
Our approach to describe the breakup reactions

- Complex scaling method (CSM)
 - The CSM is one of the methods to solve the eigenvalue problems with outgoing boundary conditions.
 - In the CSM, the relative coordinates and momenta are transformed as
 \[
 U(\theta) : \mathbf{r} \rightarrow \mathbf{r}e^{i\theta}, \quad \mathbf{k} \rightarrow \mathbf{k}e^{-i\theta}
 \]

- Applying this transformation to the Hamiltonian and wave function, we obtained complex-scaled Schrödinger equation as
 \[
 \hat{H}\chi(\mathbf{r}) = E\chi(\mathbf{r}) \rightarrow \hat{H}^\theta \chi^\theta(\mathbf{r}) = E^\theta \chi^\theta(\mathbf{r})
 \]
 where
 \[
 \chi^\theta(\mathbf{r}) = U(\theta)\chi(\mathbf{r}) = e^{\frac{3}{2}i\theta}\chi(\mathbf{r}e^{i\theta})
 \]
 \[
 \hat{H}^\theta = U(\theta)\hat{H}U^{-1}(\theta)
 \]
Search for resonances using CSM

- Under the transformation in CSM, the integral contour in the momentum space is rotated, and then, the resonance pole is obtained as a residue.
- The CSM enables us to solve the resonances on the same footing as the bound states.
- In the complex energy plane, the continuum states are classified into several families of the decay channels.
- This classification is useful to discuss the decay modes.
Search for resonances using CSM

- Under the transformation in CSM, the integral contour in the momentum space is rotated, and then, the resonance pole is obtained as a residue.
- The CSM enables us to solve the resonances on the same footing as the bound states.
- In the complex energy plane, the continuum states are classified into several families of the decay channels.
- This classification is useful to discuss the decay modes.

These poles are obtained as discretized resonances!!
Search for resonances using CSM

- Under the transformation in CSM, the integral contour in the momentum space is rotated, and then, the resonance pole is obtained as a residue.
- The CSM enables us to solve the resonances on the same footing as the bound states.
- In the complex energy plane, the continuum states are classified into several families of the decay channels.
- This classification is useful to discuss the decay modes.

These poles are obtained as discretized resonances!!

\[\text{ex) obtained spectra of } 2^+ \text{ states of } ^6\text{He} \]
We describe the three-body scattering states of core+n+n by using CSM.

We start with the following equation;

\[\Psi^{(\pm)} = \Phi_0 + \lim_{\varepsilon \to 0} \frac{1}{E - \hat{H} \pm i\varepsilon} \hat{V} \Phi_0 \]

where Φ_0 is a solution of an asymptotic Hamiltonian.

We apply CSM to the Green’s function and expand the complex-scaled Green’s function with the complete set of eigenstates of Hamiltonian.

\[U^{-1}(\theta) \frac{1}{E - \hat{H}_\theta} U(\theta) = \sum_n U^{-1}(\theta) |\chi^\theta_n\rangle \frac{1}{E - E^\theta_n} \langle \tilde{\chi}^\theta_n | U(\theta) \]

It is noted that the outgoing boundary conditions are taken into account by imaginary parts of energy eigenvalues.

Using the complex-scaled Green’s function, we obtain the three-body scattering states as

\[|\Psi^{(+)}\rangle = |\Phi_0\rangle + \sum_n U^{-1}(\theta) |\chi^\theta_n\rangle \frac{1}{E - E^\theta_n} \langle \tilde{\chi}^\theta_n | U(\theta) \hat{V} |\Phi_0\rangle \]

\[\langle \Psi^{(-)}| = \langle \Phi_0 | + \sum_n \langle \Phi_0 | \hat{V} U^{-1}(\theta) |\chi^\theta_n\rangle \frac{1}{E - E^\theta_n} \langle \tilde{\chi}^\theta_n | U(\theta) \]

YK et al., PTP 122, 499 (2009).
core+n+n three-body model for 6He

To construct the complex-scaled Green’s function, we use the core+n+n three-body orthogonality condition model.

Hamiltonian

$$\hat{H} = \sum_{i=1}^{3} t_i - T_{cm} + \sum_{i=1}^{2} V_{\alpha-n}(r_i) + V_{n-n} + V_{\alpha nn} + \lambda |\Phi_{PF}\rangle \langle \Phi_{PF}|$$

- $V_{\alpha-n}$: KKNN potential
- V_{n-n}: Minnesota force
- $V_{\alpha nn}$: effective three-body αnn potential

Wave function

- We describe the w.f. as a linear combination of two types of bases.
- The radial part of basis function is expanded with the Gaussian bases.

$$\chi(nn) = \chi_V (r_1, r_2) + \chi_T (r, R)$$

COSM (V-type)

- r, j_1
- r_2, j_2
- shell model-like

ECM (T-type)

- r, l
- R, L
- di-neutron-like
Coulomb breakup reaction of ^6He

YK et al., PRC 81, 044308 (2010).
Coulomb breakup reaction of ^{6}He

- We calculate the Coulomb breakup reaction using the equivalent photon method and the E1 strength distribution.

$$\frac{d^6\sigma}{dkdK} = \frac{16\pi^3}{9\hbar c} \cdot N_{E1}(E_\gamma) \cdot \frac{d^6 B(E1)}{dkdK}$$

$$\frac{d^6 B(E1)}{dkdK} = \frac{1}{2J_{gs} + 1} \left| \langle \Psi^{-}(k, K) | \hat{O}(E1) | \Phi_{gs} \rangle \right|^2$$

- We have two choices of relative momenta in the calculation of the E1 strength distribution.
Coulomb breakup reaction of 6He

- We calculate the differential cross section w.r.t. the excitation energy of 6He.
- The calculated cross section is convoluted by the experimental resolution.

$$
\frac{d\sigma}{dE} = \int dk \int dK \frac{d^6\sigma}{dkdK} \delta \left(E - \frac{\hbar^2 k^2}{2\mu} - \frac{\hbar^2 K^2}{2M} \right)
$$

- Calculated cross section well reproduces the observed data.
- We find no resonance in the final 1$^-$ states.
- The FSI plays a key role in the Coulomb breakup reaction.
Decay mode of non-resonant continuum states

- To investigate the correlations in the final states, we calculate the invariant mass spectra for binary subsystems.
- The experimental efficiencies are not taken into account.

\[
\frac{d\sigma}{d\varepsilon} = \int dk \int dK \frac{d^6\sigma}{dkdK} \delta \left(\varepsilon - \frac{\hbar^2 k^2}{2\mu} \right)
\]

- For α-n, the peak is obtained at the energy corresponding to the $^5\text{He}(3/2^-)$.
- The sequential decay via the $^5\text{He}(3/2^-) + n$ is important in the breakup.
- For n-n, the spectrum shows the peak just above the threshold.
- This corresponds to the virtual-state correlation of n-n in final states.

For α-n subsystem

For n-n subsystem
Short summary for Coulomb breakup of 6He

- In the Coulomb breakup of 6He, the breakup process is dominated by the sequential decay via the 5He($3/2^-$)+n.
- The threshold of the 5He($3/2^-$)+n channel is open at ~ 0.7 MeV, and hence, the Coulomb breakup cross section has the peak at ~ 1.0 MeV just above the 5He($3/2^-$)+n threshold due to the threshold effect.
- On the other hand, the n-n correlation has a sizable effect on the Coulomb breakup in reproducing the observed cross section.
- It is noted that this n-n correlation is that in the final state and does not correspond to the dineutron in the ground state.
Nuclear breakup reaction of 6He

YK et al., PRC 88, 021602 (2013).
Nuclear breakup reaction of 6He

- We investigate the 6He+C @ 240MeV/nucleon.
- To calculate the cross section, we need to treat the scattering between the projectile and target in non-perturbative way.
- We employ the CDCC to describe the reaction.
- We solve the CDCC with the pseudo state method, in which the discretized continuum states are obtained within the L^2 basis functions.

$$T = \langle \psi^-(k, K) \chi^-(P) | V | \Psi^+ \rangle$$

$$\approx \sum_n \langle \psi^-(k, K) | \Phi_n \rangle \langle \Phi_n \chi^-(P) | V | \Psi^+ \rangle$$
Nuclear breakup reaction of 6He

- We include the 0^+, 1^-, and 2^+ states for the final states in the CDCC calculation.
- We can well reproduce the observed cross section using the CDCC and $\alpha+n+n$ three-body model.
- We obtain the sharp peak coming from the 2^+ resonance at 1 MeV above the three-body breakup threshold.

T. Matsumoto et al., PRC 82, 051602 (2010).
Nuclear breakup reaction of 6He

- We calculate the double-differential cross section (DDX) as functions of relative energies of core+n+n systems to investigate the decay mode.

\[
\frac{d^2\sigma}{d\varepsilon_1 d\varepsilon_2} = \frac{(2\pi)^4 \mu_R}{\hbar^2 P_0} \int dK dP |T(k, K, P)|^2 \\
\times \delta \left(E_{\text{tot}} - \frac{\hbar^2 P^2}{2\mu_R} - \varepsilon_1 - \varepsilon_2 \right) \\
\times \delta \left(\varepsilon_1 - \frac{\hbar^2 k_1^2}{2\mu_r} \right) \delta \left(\varepsilon_2 - \frac{\hbar^2 K^2}{2\mu_y} \right)
\]

- To obtain DDX as a continuous function of relative energies, we need the overlap functions.

\[
T = \langle \psi^{(-)}(k, K) \chi^{(-)}(P) | V | \Psi^{(+)} \rangle \\
\approx \sum_n \langle \psi^{(-)}(k, K) | \Phi_n \rangle \langle \Phi_n \chi^{(-)}(P) | V | \Psi^{(+)} \rangle
\]

- The three-body scattering states are calculated by using CSM.
Specific decay mode of the 2^+ resonance of ^6He

- DDX in two types of Jacobi coordinate sets.
 - Both of DDX’s have the ridge structures at the energy of $\alpha+n+n$ as ~ 1 MeV.
 - The shapes of DDX’s show the dominance of the excitation to the 2^+ resonance at $E = 0.98$ MeV with $\Gamma = 0.27$ MeV.
- To investigate the decay modes of the 2^+ resonance, we next calculate the invariant mass spectra for binary subsystems.

![Diagram](image)
Specific decay mode of the 2^+ resonance of ^6He

- To clarify the decay mode of the 2^+ resonance, we calculate the invariant mass spectra by gating on the total energy as 0.98 ± 0.135 MeV, which corresponds to the resonance energy and decay width of the 2^+ resonance.
- The result of α-n indicates that two neutrons are emitted with equal sharing of the total energy of the $\alpha+n+n$ system.
- The spectrum for the n-n subsystem shows a two-peak structure.
 - The 1st peak corresponds to the virtual-state correlation as similar to that in the Coulomb breakup case.
 - The 2nd peak shows that the back-to-back emission of n-n because the total energy of $\alpha+n+n$ is exhausted by the relative motion of n-n.

For α-n subsystem

![Graph for α-n subsystem]

For n-n subsystem

![Graph for n-n subsystem]
Summary

- We investigate the breakup mechanism of ^6He applying the CSM to the $\alpha+n+n$ three-body model.
 - For the Coulomb breakup, we use the equivalent photon method.
 - The breakup reaction of $^6\text{He}+\text{C}$ is described by using the CDCC.

- The FSI plays a key role in the Coulomb breakup of ^6He.
 - The sequential decay via the $^5\text{He}(3/2^-)+n$ dominates the cross section.
 - The n-n virtual-state correlation in the final state can be seen in the n-n invariant mass spectra.

- In the nuclear breakup of ^6He, we can see that the specific mode in the decay from the 2^+ resonance.
 - Two neutrons are emitted with equal sharing of the total energy.
 - the virtual-state correlation has a sizable effect on the cross section as similar to the Coulomb breakup.
 - In addition to the virtual-state correlation, the back-to-back emission of two neutrons could be found in the decay from the 2^+ resonance.