Shell model calculations for exotic nuclei with realistic potentials: reliability and predictiveness

Luigi Coraggio

Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

From Rare Isotopes to Neutron Stars
September 17th, 2015
ECT*, Trento
- A. Covello (Università “Federico II” di Napoli)
- A. Gargano (INFN)
- N. Itaco (Università “Federico II” di Napoli and INFN)
- T. T. S. Kuo (SUNY at Stony Brook, USA)
- L. C. (INFN)
Part I

The theoretical framework
Introductory remark

What is a realistic effective shell-model hamiltonian?
An example: ^{19}F

- 9 protons & 10 neutrons interacting
- spherically symmetric mean field (e.g. harmonic oscillator)
- 1 valence proton & 2 valence neutrons interacting in a truncated model space

The degrees of freedom of the core nucleons and the excitations of the valence ones above the model space are not considered explicitly.
An example: 19F

- 9 protons & 10 neutrons interacting
- spherically symmetric mean field (e.g. harmonic oscillator)
- 1 valence proton & 2 valence neutrons interacting in a truncated model space

The degrees of freedom of the core nucleons and the excitations of the valence ones above the model space are not considered explicitly.
An example: 19F

- 9 protons & 10 neutrons interacting
- spherically symmetric mean field (e.g. harmonic oscillator)
- 1 valence proton & 2 valence neutrons interacting in a truncated model space

The degrees of freedom of the core nucleons and the excitations of the valence ones above the model space are not considered explicitly.
Effective shell-model hamiltonian

The shell-model hamiltonian has to take into account in an effective way all the degrees of freedom not explicitly considered.

Two alternative approaches
- phenomenological
- microscopic

\[V_{NN} (+ V_{NNN}) \Rightarrow \text{many-body theory} \Rightarrow H_{\text{eff}} \]

Definition
The eigenvalues of \(H_{\text{eff}} \) belong to the set of eigenvalues of the full nuclear hamiltonian.
Choose a realistic NN potential (NNN)

2. Pin down the model space better tailored to study the system under investigation

3. Derive the effective shell-model hamiltonian by way of the many-body theory

4. Calculate the physical observables (energies, e.m. transition probabilities, ...)

Luigi Coraggio
ECT* - APCTP Joint Workshop
Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion?
- Brueckner G matrix
- EFT inspired approaches
- $V_{\text{low}}-k$, SRG, chiral potentials
Realistic nucleon-nucleon potential: V_{NN}

Several realistic potentials $\chi^2/\text{datum} \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion?

- Brueckner G matrix
- EFT inspired approaches
 - $V_{\text{low}-k}$, SRG chiral potentials

Strong short-range repulsion

![Graph showing the inter-nucleon potential vs. separation, with regions marked for 2π, p, ω, and σ.]
Realistic nucleon-nucleon potential: V_{NN}

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion?
- Brueckner G matrix
- EFT inspired approaches
 - V_{low-k, SRG
 - chiral potentials
Realistic nucleon-nucleon potential: V_{NN}

Several realistic potentials $\chi^2/\text{datum} \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion?
- Brueckner G matrix
- EFT inspired approaches
 - $V_{\text{low}-k}$, SRG
 - chiral potentials

Strong short-range repulsion
Realistic nucleon-nucleon potential: V_{NN}

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion?

- Brueckner G matrix
- EFT inspired approaches
 - $V_{\text{low-}k}$, SRG
 - Chiral potentials

Strong short-range repulsion
Realistic nucleon-nucleon potential: V_{NN}

Several realistic potentials $\chi^2/datum \simeq 1$: CD-Bonn, Argonne V18, Nijmegen, ...

How to handle the short-range repulsion?

- Brueckner G matrix
- EFT inspired approaches
 - $V_{\text{low-}k}$, SRG
 - chiral potentials

Strong short-range repulsion
The shell-model effective hamiltonian

A-nucleon system Schrödinger equation

\[H |\psi_\nu\rangle = E_\nu |\psi_\nu\rangle \]

with

\[H = H_0 + H_1 = \sum_{i=1}^A (T_i + U_i) + \sum_{i<j} (V_{i}\!\!_{j}^{NN} - U_i) \]

Model space

\[|\Phi_i\rangle = [a_1^\dagger a_2^\dagger \ldots a_n^\dagger]_i |c\rangle \Rightarrow P = \sum_{i=1}^d |\Phi_i\rangle \langle \Phi_i| \]

Model-space eigenvalue problem

\[H_{\text{eff}} P |\psi_\alpha\rangle = E_\alpha P |\psi_\alpha\rangle \]
The shell-model effective hamiltonian

\[
\begin{pmatrix}
 PHP & PHQ \\
 QHP & QHQ
\end{pmatrix}
\begin{matrix}
 \mathcal{H} = X^{-1} H X \\
 \Rightarrow
\end{matrix}
\begin{pmatrix}
 PHP & PHQ \\
 QHP & QHQ
\end{pmatrix}

Q\mathcal{H} P = 0

\[
H_{\text{eff}} = PHP
\]

Suzuki & Lee \Rightarrow X = e^{\omega} \text{ with } \omega = \begin{pmatrix}
 0 & 0 \\
 Q\omega P & 0
\end{pmatrix}

\[
H_{\text{eff}}^1(\omega) = PH_1 P + PH_1 Q \frac{1}{\epsilon - QHQ} QH_1 P - PH_1 Q \frac{1}{\epsilon - QHQ} \omega H_{\text{eff}}^1(\omega)
\]
The shell-model effective hamiltonian

Folded-diagram expansion

\hat{Q}-box vertex function

$$\hat{Q}(\epsilon) = PH_1 P + PH_1 Q \frac{1}{\epsilon - QHQ} QH_1 P$$

⇒ Recursive equation for H_{eff} ⇒ iterative techniques (Krenciglwa-Kuo, Lee-Suzuki, ...)

$$H_{\text{eff}} = \hat{Q} - \hat{Q}' \int \hat{Q} + \hat{Q}' \int \hat{Q} \int \hat{Q} - \hat{Q}' \int \hat{Q} \int \hat{Q} \int \hat{Q} \ldots ,$$
The perturbative approach to the shell-model H^{eff}

\[\hat{Q}(\epsilon) = PH_1 P + PH_1 Q \frac{1}{\epsilon - QHQ} QH_1 P \]

The \hat{Q}-box can be calculated perturbatively

\[\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1 Q)^n}{(\epsilon - QH_0 Q)^{n+1}} \]

The diagrammatic expansion of the \hat{Q}-box
The perturbative approach to the shell-model H^{eff}

- H^{eff} for systems with one and two valence nucleons
- \hat{Q}-box \Rightarrow Goldstone diagrams up to third order in V_{NN} (up to 2p-2h core excitations)
- Padè approximant $[2|1]$ of the \hat{Q}-box

\[
[2|1] = V_{Qbox}^0 + V_{Qbox}^1 + V_{Qbox}^2 (1 - (V_{Qbox}^2)^{-1} V_{Qbox}^3)^{-1},
\]
Test case: p-shell nuclei

- $V_{NN} \Rightarrow$ chiral N3LO potential by Entem & Machleidt (smooth cutoff $\simeq 2.5$ fm$^{-1}$)
- H_{eff} for two valence nucleons outside 4He
- Single-particle energies and residual two-body interaction are derived from the theory. **No empirical input**

First, some convergence checks!

Convergence checks

The intermediate-state space Q

Q-space is truncated: intermediate states whose unperturbed excitation energy is greater than a fixed value E_{max} are disregarded

$$|\epsilon_0 - QH_0 Q| \leq E_{max} = N_{max} \hbar \omega$$

6Li yrast states

Results stable for $N_{max} \geq 20$
Convergence checks

Order-by-order convergence

Compare results from $H_{1\text{st}}^{\text{eff}}$, $H_{2\text{nd}}^{\text{eff}}$, $H_{3\text{rd}}^{\text{eff}}$ and $H_{\text{Padé}}^{\text{eff}}$.
Convergence checks

Dependence on $\hbar \omega$

Auxiliary potential $U \Rightarrow$ harmonic oscillator potential

HF-insertions

- zero in a self-consistent basis
- neglected in most applications
- disregard of HF-insertions introduces relevant dependence on $\hbar \omega$
Approximations are under control ... and what about the accuracy of the results?

Compare the results with the “exact” ones

ab initio no-core shell model (NCSM)

To compare our results with NCSM we need to start from a translationally invariant Hamiltonian

\[H_{int} = (1 - \frac{1}{A}) \sum_{i=1}^{A} \frac{p_i^2}{2m} + \sum_{i<j=1}^{A} \left(V_{ij}^{NN} - \frac{p_i \cdot p_j}{mA} \right) = \]

\[= \left[\sum_{i=1}^{A} \left(\frac{p_i^2}{2m} + U_i \right) \right] + \left[\sum_{i<j=1}^{A} \left(V_{ij}^{NN} - U_i - \frac{p_i^2}{2mA} - \frac{p_i \cdot p_j}{mA} \right) \right] \]

(a) not translationally invariant Hamiltonian
(b) purely intrinsic hamiltonian
Remark

H^{eff} derived for 2 valence nucleon systems \Rightarrow 3-, 4-, .. n-body components are neglected

- ground-state energies for $N = Z$ nuclei
- discrepancy grows with the number of valence nucleons
Benchmark calculation

^10B relative spectrum

- discrepancy ≤ 1 MeV
- minor role of many-body correlations
Part II

Reliability
Large-scale realistic shell-model calculations

Neutron-rich isotopic chains

Approaching neutron drip line:
Shell-model study of the onset of collectivity at $N = 40$

Proton-rich isotopic chains

Approaching proton drip line:
Enhanced quadrupole collectivity of neutron-deficient tin isotopes

Collectivity at $N = 40$

\Rightarrow shell-model study of neutron-rich isotopic chains outside 48Ca

\Rightarrow Collective behavior framed within the quasi-SU(3) approximate symmetry

\Rightarrow Two model spaces with 48Ca inert core, including or not the neutron $1d_{5/2}$ orbital
Collectivity at \(N = 40 \) in neutron-rich \(^{40}\)Cr

A. Gade, 1,2 R. V. F. Janssens, 1 T. Bangher, 1,2 D. Bazar, 1 B. A. Brown, 1,3 M. P. Carpenter, 1 C. J. Chiara, 1,3 A. N. Deacon, 4 S. J. Freeman, 1 G. F. Grinyer, 1 C. R. Hoffman, 1 B. P. Kay, 1 G. G. Kondev, 1 T. Lauritsen, 1 S. McDaniel, 1,2 K. Meierbachtol, 1,2 A. Ratkiewicz, 1,2 S. R. Stoberg, 1 K. A. Walsh, 1,2 D. Weisshaar, 1 R. Winkler, 1 and S. Zhu 1

1National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
2Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
3Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
4Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
5School of Physics and Astronomy, Schuster Laboratory, University of Manchester, M13 9PL, United Kingdom
6Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
7Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA

(Rceived 19 March 2010; published 28 May 2011)

Re-induced inelastic scattering of \(^{60}\)Fe and \(^{62}\)Cr was performed at intermediate beam energies. Excited states in \(^{40}\)Cr were measured for the first time. Energies and population patterns of excited states in these neutron-rich Fe and Cr nuclei are compared and interpreted in the framework of large-scale shell-model calculations in different model spaces. Evidence for increased collectivity and for distinct structural changes between the neighboring Fe and Cr isotopic chains near \(N = 40 \) is presented.

Collectivity at \(N = 40 \) in neutron-rich \(^{40}\)Cr

A. Gade, 1,2 R. V. F. Janssens, 1 T. Bangher, 1,2 D. Bazar, 1 B. A. Brown, 1,3 M. P. Carpenter, 1 C. J. Chiara, 1,3 A. N. Deacon, 4 S. J. Freeman, 1 G. F. Grinyer, 1 C. R. Hoffman, 1 B. P. Kay, 1 G. G. Kondev, 1 T. Lauritsen, 1 S. McDaniel, 1,2 K. Meierbachtol, 1,2 A. Ratkiewicz, 1,2 S. R. Stoberg, 1 K. A. Walsh, 1,2 D. Weisshaar, 1 R. Winkler, 1 and S. Zhu 1

1National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
2Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
3Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
4Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
5School of Physics and Astronomy, Schuster Laboratory, University of Manchester, M13 9PL, United Kingdom
6Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
7Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA

(Rceived 19 March 2010; published 28 May 2011)

Re-induced inelastic scattering of \(^{60}\)Fe and \(^{62}\)Cr was performed at intermediate beam energies. Excited states in \(^{40}\)Cr were measured for the first time. Energies and population patterns of excited states in these neutron-rich Fe and Cr nuclei are compared and interpreted in the framework of large-scale shell-model calculations in different model spaces. Evidence for increased collectivity and for distinct structural changes between the neighboring Fe and Cr isotopic chains near \(N = 40 \) is presented.

The collectivity at \(N = 40 \)

Luigi Coraggio

ECT*-APCTP Joint Workshop
Collectivity at $N = 40$

(a) Expt.
- Model space (I)
- Model space (II)

(b) ENSDF
- Rother 2011
- Crawford 2013

(c) Expt.
- Model space (I)
- Model space (II)

(d) ENSDF
- Marchi 2013
shell-model study of neutron-deficient tin isotopes using 88Sr as a core

Quadrupole collectivity enhanced by the $Z = 50$ cross-shell excitations

Model space spanned by proton $1p_{1/2}, 0g_{9/2}, 0g_{7/2}, 1d_{5/2}$ and $0g_{7/2}, 1d_{5/2}$ orbitals

Theoretical single-particle energies, two-body matrix elements, and effective charges have been employed
Calculation of the effective charges

\[\langle a | e_p | b \rangle \]

| \(n_a | l_a a \) | \(n_b | l_b b \) | \(\langle a | e_p | b \rangle \) |
|------------------|------------------|------------------|
| \(0g_{9/2} \) | \(0g_{9/2} \) | 1.62 |
| \(0g_{9/2} \) | \(0g_{7/2} \) | 1.67 |
| \(0g_{9/2} \) | \(1d_{5/2} \) | 1.60 |
| \(0g_{7/2} \) | \(0g_{7/2} \) | 1.73 |
| \(0g_{7/2} \) | \(1d_{5/2} \) | 1.74 |
| \(0g_{7/2} \) | \(1d_{3/2} \) | 1.76 |
| \(1d_{5/2} \) | \(1d_{5/2} \) | 1.73 |
| \(1d_{5/2} \) | \(1d_{3/2} \) | 1.72 |
| \(1d_{5/2} \) | \(2s_{1/2} \) | 1.76 |
| \(1d_{3/2} \) | \(1d_{3/2} \) | 1.74 |
| \(1d_{3/2} \) | \(2s_{1/2} \) | 1.76 |
| \(0h_{11/2} \) | \(0h_{11/2} \) | 1.72 |

| \(n_a | l_a a \) | \(n_b | l_b b \) | \(\langle a | e_n | b \rangle \) |
|------------------|------------------|------------------|
| \(0g_{7/2} \) | \(0g_{7/2} \) | 0.94 |
| \(0g_{7/2} \) | \(1d_{5/2} \) | 0.96 |
| \(0g_{7/2} \) | \(1d_{3/2} \) | 0.95 |
| \(1d_{5/2} \) | \(1d_{5/2} \) | 0.94 |
| \(1d_{5/2} \) | \(1d_{3/2} \) | 0.97 |
| \(1d_{5/2} \) | \(2s_{1/2} \) | 0.79 |
| \(1d_{3/2} \) | \(1d_{3/2} \) | 0.96 |
| \(1d_{3/2} \) | \(2s_{1/2} \) | 0.79 |
| \(0h_{11/2} \) | \(0h_{11/2} \) | 0.87 |
Enhanced quadrupole collectivity in light tin isotopes

Enhanced quadrupole collectivity is observed in light tin isotopes, as depicted in the figure. The plots show the comparison between experimental data (Expt.) and theoretical predictions from the Shell model with an 88Sr core.

(a)
- **Expt.**
- **Shell model – 88Sr core**

(b)
- **NSCL**
- **Riken**
- **REX–ISOLDE**
- **GSI**

The plots illustrate the 2^+_1 excitation energy [MeV] and $B(E2; 0^+ \rightarrow 2^+)$ [e2 fm4] as a function of the neutron number (N) for tin isotopes ranging from $N = 50$ to $N = 58$.
Part III

Predictiveness
Nuclear models and predictive power

RIBs & advances in detection techniques ⇒ unknown structure of nuclei towards the drip lines
Realistic shell-model calculations in different mass regions

\[\Rightarrow \]

results in good agreement with experimental data

Can realistic shell-model calculations be predictive?

few selected examples
Few selected physics cases

- Sn isotopes beyond $N = 82$
- heavy calcium isotopes
- neutron-rich titanium and nickel isotopes

Single-particle energies from the experiment \Rightarrow reduced role of $3N$ force
Sn isotopes beyond $N = 82$

Shell-model study of exotic Sn isotopes with a realistic effective interaction

A Covello1,2, L Coraggio2, A Gargano2 and N Itaco1,2

1 Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
2 Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy

⇒ shell-model study of Sn isotopes beyond $N = 82$
⇒ $V_{\text{low-k}}$ from CD-Bonn NN potential
⇒ $h_{9/2}fpi_{13/2}$ model space with ^{132}Sn inert core
⇒ SP energies from ^{133}Sn
Shell-model study of exotic Sn isotopes with a realistic effective interaction

A Covello1,2, L Coraggio2, A Gargano2 and N Itaco1,2

1Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Compresso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
2Istituto Nazionale di Fisica Nucleare, Compresso Universitario di Monte S. Angelo, I-80126 Napoli, Italy

⇒ shell-model study of Sn isotopes beyond N = 82

... It is the aim of our study to compare the results of our calculations with the available experimental data and to make predictions for the neighboring heavier isotopes ...
Sn isotopes beyond $N = 82$

Excitation energies of the 2^+_1, 4^+_1, and 6^+_1 states in Sn isotopes

![Graph showing excitation energies of different states in Sn isotopes](image-url)
Sn isotopes beyond $N = 82$

Excitation energies of the 2^+_1, 4^+_1, and 6^+_1 states in Sn isotopes

[Graph showing excitation energies for $A = 134, 136, 138, 140$.]

Yrast 6^+ Seniority Isomers of $^{136, 138}\text{Sn}$

Heavy calcium isotopes

LETTER

Masses of exotic calcium isotopes pin down nuclear forces

F. Wienholtz¹, D. Beck², K. Blaum³, Ch. Borgmann⁴, M. Breitenfeldt⁵, R. B. Cakirli⁶,⁷, S. George⁸, F. Herfurth², J. D. Holt⁵,⁷, M. Kowalska⁸, S. Kreim³,⁸, D. Lunney⁹, V. Manea⁴, J. Menéndez⁶,⁷, D. Niedherr³, M. Rosenbusch¹, L. Schweikhard⁶, A. Schwenk⁴, J. Simonis⁶,⁷, J. Starja¹⁰, R. N. Wolf¹ & K. Zuber¹⁰

general:
⇒ first mass measurements of 53Ca and 54Ca
⇒ new method of precision mass spectroscopy with ISOLTRAP
“... pronounced decrease in S_{2n} revealed by the new ^{53}Ca and ^{54}Ca ISOLTRAP masses ...”
Heavy calcium isotopes

LETTER

Evidence for a new nuclear ‘magic number’ from the level structure of 54Ca

D. Steppenbeck1, S. Takeuchi3, N. Aoi3, P. Doornenbal3, M. Matsushita1, H. Wang2, H. Baba2, N. Fukuda2, S. Go1, M. Honma2, J. Lee2, K. Matsui3, S. Michimasa3, T. Motobayashi3, D. Nishimura6, T. Otsuka1,5, H. Sakurai2,5, Y. Shiga7, P.-Å. Söderström2, T. Sumikama8, H. Suzuki2, R. Taniuchi9, Y. Utsuno10, J. J. Valiente-Dobón10 & K. Yoneda7

⇒ spectroscopic study of 54Ca
⇒ proton knockout reactions involving 55Sc and 56Ti projectiles

Luigi Coraggio
ECT* - APCTP Joint Workshop
Heavy calcium isotopes

⇒ shell-model study of neutron-rich calcium isotopes
⇒ fp model space with 40Ca inert core
⇒ predictions for the (at that time) unknown spectra of $^{53-56}$Ca
Heavy calcium isotopes: shell-model results

Different monopole properties

\begin{align*}
S_{\alpha/2} & \quad \text{[MeV]} \\
22 & 24 & 26 & 28 & 30 & 32 & 34 \\
\text{Expt.} & \quad \text{V}_{\text{low}-k} \ (2009) & \quad \text{GXPF1A} \ (2005)
\end{align*}

\begin{align*}
\text{excitation energy} & \quad \text{[MeV]} \\
2_+ & 1_+ \\
\text{Present calculations} & \quad \text{GXPF1A}
\end{align*}

Luigi Coraggio
ECT* - APCTP Joint Workshop
Heavy calcium isotopes: shell-model results

different monopole properties
Realistic shell-model calculations for isotopic chains “north-east” of 48Ca in the (N,Z) plane

L. Coraggio, 1 A. Covello, 2 A. Gargano, 1 and N. Itaco 1,2

1Istituto Nazionale di Fisica Nucleare, Complesso Universitario di Monte S. Angelo, Via Cintia - I-80126 Napoli, Italy
2Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia - I-80126 Napoli, Italy

(Received 16 October 2013; revised manuscript received 9 December 2013; published 26 February 2014)

We perform realistic shell-model calculations for nuclei with valence nucleons outside 48Ca, employing two different model spaces. The matrix elements of the effective two-body interaction and electromagnetic multipole operators have been calculated within the framework of many-body perturbation theory, starting from a low-momentum potential derived from the high-precision CD-Bonn free nucleon-nucleon potential. The role played by the neutron orbital $1d_{5/2}$ has been investigated by comparing experimental data on yrast quadrupole excitations of isotopic chains north-east of 48Ca with the results of calculations including or not including this single-particle state in the model space.

DOI: 10.1103/PhysRevC.89.024319 PACS number(s): 21.60.Cs, 23.20.Lv, 27.40.+z, 27.50.+e

⇒ shell-model study of neutron-rich isotopic chains outside 48Ca
⇒ $fpgd$ model space with 48Ca inert core
⇒ predictions for the (at that time) unknown spectra exotic Ti isotopes and of 78Ni shell closure
Isotopic chains “north-east” of 48Ca: shell-model results

![Graphs showing $B(E2; 2^+ \rightarrow 0^+)$ and excitation energy vs. N]
Isotopic chains “north-east” of ^{48}Ca: shell-model results

Luigi Coraggio ECT* - APCTP Joint Workshop
Conclusions and outlook

- The agreement of our results with the experimental data testifies the reliability of a microscopic shell-model calculation with realistic potentials.
- We have now evidence of the predictive power of realistic shell model.
- Role of real three-body forces and three-body correlations should be investigated.
- Perspectives: benchmark calculations with other many-body approaches.
These terms introduce density dependence into the effective shell-model hamiltonian
Conclusions and outlook

- The agreement of our results with the experimental data testifies the reliability of a **microscopic shell-model calculation** with **realistic potentials**.
- We have now evidence of the predictive power of realistic shell model.
- Role of **real three-body forces and three-body correlations** should be investigated.
- Perspectives: **benchmark calculations** with other many-body approaches.