Impact of pairing correlations on the chemical composition of the inner crust of a neutron star

A. Pastore, M. Shelley, C. Diget

Department of Physics, University of York, Heslington, York, YO10 5DD, UK

March 22, 2017
Neutron Stars

Several neutron stars detected in the universe

Vela Nebula

- 10^4 years ago explosion
- Rotating neutron star (pulsar)
- Radius ≈ 10 Km
- Density $\approx 5 - 10 \rho_0$ ($\rho_0 \rightarrow$ density of a nucleus)
The crust of a Neutron Star ($\approx 0.5 - 1$ Km)

The structure evolves with the density

- Neutron crust $\rho < \rho_0$
- Crystalline structure: isolated nuclei, nuclei + neutron gas

Inner crust of neutron star

Isolated nuclei in a crystalline structure surrounded by neutron gas

Interesting aspects

- Nucleus-gas interaction
- Neutron superfluidity
- Thermal evolution
How to determine the chemical composition?

Approximations

- Spherical cells → Wigner Seitz (WS) cells
- Non-interacting WS cells
- Uniform e distribution

We need to minimise the energy

$$E = Z(m_p + m_e) + (N - A)m_n + E_{nuclear} + K_e + E_L$$

- $E_{nuclear}$: nuclear binding energy
- K_e electron kinetic energy (ultra-relativistic)
- E_L lattice energy

How to calculate $E_{nuclear}$

Nuclear physics input → calculate $E_{nuclear}$ for a wide range of densities, asymmetries and temperatures.
Proton pairing → small shift on energy minima, smaller differences between minima (more mixing?)

No spurious Box-effects

Shell effects → Strutinsky correction

No neutron pairing
HFB methods

DFT models

Solve HFB equations in a WS cell

\[\sum_{n'} (h_{n'nlj}^q - \mu_{F,q}) U_{n'lj}^{i,q} + \sum_{n'} \Delta_{nn'lj}^q V_{n'lj}^{i,q} = E_{ij}^q U_{nlj}^{i,q} \]

\[\sum_{n'} \Delta_{nn'lj}^q U_{n'lj}^{i,q} - \sum_{n'} (h_{n'nlj}^q - \mu_{F,q}) V_{n'lj}^{i,q} = E_{ij}^q V_{nlj}^{i,q} \]

- Microscopic functionals + pairing (no approx.)
- Boundary conditions → continuum effects

- No assumption on density shapes (spherical symmetry!)
Boundary conditions I

\[M. \text{ Baldo et al. Nucl. Phys. A775, 235-244 (2006)} \]
Boundary conditions II

Compare E/A in pure neutron matter and in a box at same k_F

Fig. 2. We represent several quantities versus the W-S radius: (a) the binding energy $B_{WS-hom.}(\rho_{unb.}, R_{WS})$ corresponding to $N_{zone}=6$, 7 and 8 (b) the difference $B_{hom.}(\rho_{unb.}) - B_{WS-hom.}(\rho_{unb.}, R_{WS})$ (dots) and the function $f(\rho_{unb.}, R_{WS})$ which fit the smooth component (solid lines), and (c) the difference between the dots presented in (b) and the function $f(\rho_{unb.}, R_{WS})$.

[J. Margueron et al., arXiv:0711.0106 (2007)]
Boundary conditions III

Compare E/A in pure neutron matter and in a box at same k_F

We need large boxes!
- We solve HFB equations in a large box $R_b = 80$ fm
- Approx. constant error 7keV/particle \rightarrow constant shift
- Long CPU time....
Keeping box fixed....

- We solve HFB equations
- We solve HF equations
- We solve HF+BCS equations

The error is *mainly* due to the treatment of pairing!
Pairing filed in the crust

$\Delta(r)$ is not flat

- Nuclear cluster enhances/reduces $\Delta(r)$!!
- Need careful treatment BCS or HFB (LDA is not good!)
We work in $R_{box} = 80$ fm to calculate $E_{nuclear}$. β-equilibrium is imposed $a posteriori$ to determine R_{WS}. External neutron gas inert [need constant ρ!!]

$$E_{nuclear} = \int_0^{R_{WS}} dr \mathcal{H}(\rho(r))$$

$$N = \int_0^{R_{WS}} dr \rho(r)$$
HFB: large scale calculations

How to reduce CPU time?

For fixed ρ_b one needs to determine

- Need to explore 2D space (Z, R_{WS}) for fixed ρ_b

Approximation

We treat V_{pe} as *perturbation*: correction on total energy and μ_p
HFB: large scale calculations

Coulomb interaction

- Proton potential treated fully-self-consistent (direct + Slater)
- Electron \rightarrow uniform gas
- Proton-electron potential

$$V_{p-e} = \frac{Ze^2}{2R_{WS}} \left[\left(\frac{r}{R_{WS}} \right)^2 - 3 \right]$$
Solution:

We treat V_{pe} as *perturbation* on final result (E_{tot} and μ_p). Error of $\sigma \approx 2/3$ keV/particle.

Error estimate:

- Error on total energy $E_{ep} \approx 2$ keV/p
- Error on $\mu_p \rightarrow$ inaccuracy in β-equilibrium $\rightarrow 2$ keV/p
Skyrme HFB+\(\delta\)-pairing (\(\Delta \approx 3\) MeV)

We perform HFB calculations in function of \(Z\) and \(N\) (total box) in steps of 10 (50) neutrons.

We span \(\rho \in [10^{-4} - 3 \times 10^{-2} \text{ [fm}^{-3}\text{]}] \rightarrow 800 \times (Z_{\text{max}} - Z_{\text{min}}) \approx 18000\).

Simple *parametric* script.
Gaussian Process Emulators (GPEs)

- Emulate unknown outputs of a simulation
- Use Bayesian inference (i.e. not the same as basic interpolation)
- Probability of output being in certain region is also used by emulator
- Outputs of simulation are expected to vary smoothly with simulation inputs
- Outputs are modelled as a random Gaussian process in parameter space defined by simulation inputs
- In 1D, works by fitting set of polynomials to simulation output
GPE applied to sample of 10 data points (left) and 20 data points (right).

- Dotted line is true unknown function, $y(x)$.
- Points plus error bars → outputs of a simulation
- Solid lines → outputs GPE plus 95% confidence interval.
GPE results

- We have confidence interval given by GPE and based on our error input!
- ρ_b becomes a continuous variable!! (as in semi-classic)
- GPE is not necessarily linked to HFB!
Cluster configurations

- We have determined the cluster configuration
- We add all Z values falling in the confidence interval associated with the minimum
Conclusions and Perspectives

Conclusions

- Pairing correlations impact chemical composition
- Strong shell effects → Need microscopic description
- Very difficult problem to solve

GPE methods

Advanced GPE methods → make the problem solvable with controlled approximations.

Perspectives

- Full HFB treatment (no \textit{ad hoc} corrections)
- Very large boxes → better treatment of continuum
- Systematic calculations (\textit{i.e.} vary functionals/pairing....)
Some problems at the drip-line....

- Inconsistent treatment at the drip-line: HFB vs Semi-classic (same interaction!)

<table>
<thead>
<tr>
<th>Force</th>
<th>\bar{n}_{drip} (fm$^{-3}$)</th>
<th>Z</th>
<th>N</th>
<th>e (MeV)</th>
<th>P (MeV fm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSk19</td>
<td>2.63464×10^{-4}</td>
<td>40</td>
<td>96</td>
<td>-1.79426</td>
<td>5.072×10^{-4} (4.938 $\times 10^{-4}$)</td>
</tr>
<tr>
<td>BSk20</td>
<td>2.62873×10^{-4}</td>
<td>40</td>
<td>95</td>
<td>-1.79451</td>
<td>5.064×10^{-4} (4.923 $\times 10^{-4}$)</td>
</tr>
<tr>
<td>BSK21</td>
<td>2.57541×10^{-4}</td>
<td>40</td>
<td>94</td>
<td>-1.81718</td>
<td>4.984×10^{-4} (4.894 $\times 10^{-4}$)</td>
</tr>
<tr>
<td>SLy4</td>
<td>2.45897×10^{-4}</td>
<td>40</td>
<td>93</td>
<td>-1.78801</td>
<td>4.744×10^{-4} (4.807 $\times 10^{-4}$)</td>
</tr>
</tbody>
</table>