Experimental results of the $^{12}\text{C}(^{12}\text{C},p)^{23}\text{Na}$ carbon burning reaction at low energies and (a limit) overview of direct data
Outline of this Presentation

Experimental results of the $^{12}\text{C}(^{12}\text{C},p)^{23}\text{Na}$ carbon burning reaction at low energies and (a limit) overview of direct data

• Astrophysical Motivation – Carbon Burning

• The Carbon Fusion - $^{12}\text{C} + ^{12}\text{C}$ - recent experiments
 → experimental issues
 → extrapolation
 → robustness of data

• Recommendations for future experiments
Astrophysical Motivation $^{12}\text{C} + ^{12}\text{C}$ fusion

Results of current Stellar Models suggest:

$M_{up} \equiv$ minimum mass for carbon ignition

- **Stars with $M < M_{up}$ (presently $8M_{\odot}$)**
 These stars shed their H-rich envelopes during He burning (AGB phase) and end as CO White Dwarfs.
 → *Impact on the Nucleosynthesis and the chemical evolution of the Universe*

 → *the expected observational rates for Supernovae and Novae depend on the fundamental mass limits M_{up} and $M'_{up} and, thus on the $^{12}\text{C} + ^{12}\text{C}$ reaction rates*

- **Stars with $M > M'_{up}$**
 Ignition of central *carbon burning* followed by Ne, O, and Si burning. The subsequent evolution proceeds in most cases to a core collapse Supernova.

degenerated conditions and after a super AGB phase end as ONeMg White Dwarf.
Wide range of possible heavy ion reactions - at low energies most important:

12C + 12C (lowest Coulomb Barrier)

12C(12C,p)23Na Q = 2.240 MeV
12C(12C,α)20Ne Q = 4.617 MeV
12C(12C,n)23Mg Q = -2.598 MeV

$E_G = 2.42 \times T_9^{2/3} \pm 0.75 \times T_9^{5/6}$

The 12C+12C fusion reactions produce light elements; their abundances stay relatively low and reflect the rate of the reactions destroying them and of 12C+12C.
Summary of previous studies

γ-ray spectroscopy

High and Cujec, Nucl. Phys. A, 1977, $E_{cm} > 2.46$ MeV
Erb et al., Phys. Rev. C, 1980 $E_{cm} > 5.6$ MeV
Kettner et al., Z. Phys. A, 1980, $E_{cm} > 2.45$ MeV \rightarrow large discrepancy with Mazarakis
Barron-Palos et al., Nucl. Phys. A, 2006, $E_{cm} > 2.25$ MeV \rightarrow different energy dependence
Spillane et al., Phys. Rev. Lett., 2007, $E_{cm} > 2.1$ MeV

particle spectroscopy (α- and p-detection)

Patterson et al., Astrophys. J., 1969, $E_{cm} > 3.23$ MeV
Mazarakis and Stephens, Phys. Rev. C, 1973 $E_{cm} > 2.45$ MeV
Becker et al., Z. Phys. A, 1981, $E_{cm} > 2.8$ MeV \rightarrow most complete data set at present
Aguilera et al., Phys. Rev. C, 2006, $E_{cm} > 4.42$ MeV \rightarrow higher energy only

common issue: large uncertainties below $E_{cm} = 3$ MeV
Level Scheme - γ-ray spectroscopy
Experimental Setup - γ-ray spectroscopy

- 1 germanium detector (115%) at 0°
- lead shielding (15 cm)
- active shielding (cosmic muons)
- thick Graphite target (1 mm) – high stability, clean
- target heated with beam (about 700° C)

→ no hydrogen/deuterium contaminations
- differential method – energy steps 12.5 and 25 keV
- observation of $E_\gamma = 440$ keV (p channel) and $E_\gamma = 1634$ keV (α channel)

- covered energy range $E_{cm} = 2.1 – 4.7$ MeV

2 cm Ge detector

$\varepsilon_\gamma = 2\%$ (3.6%)

12 C beam

Graphite

40 pµA

Experimental Setup - γ-ray spectroscopy
Experimental Results - γ-ray spectroscopy

12C + 12C

$E_{cm} = 2.85$ MeV

Counts per second

Energy [keV]

Spillane et al., PRL 98, 122501 (2007)
Experimental Results - γ-ray spectroscopy

very important feature of this experiment: low hydrogen content in target

comparison of γ-ray spectra with earlier experiments

Baron-Palos et al., NPA 779 (2006) 318
Experimental Results - γ-ray spectroscopy

Advantages of this approach:
- very easy
- „clear“ signature of γ-lines

Disadvantage:
- low efficiency
- unknown angular distribution
- not sensitive to ground state transitions
 → could make 50% of cross section
 → no measurement of σ_{tot}
 → need estimate from old measurement
Experimental Results – total S-factor

S^*_tot [MeV b]

importance of resonances

E [MeV]
natural next step

CIRCE Accelerator

Tandem Accelerator
3 MV

Ion Production and Detection
Electrostatic Components
Magnetic Components
Beam line

Injection Magnet
Magnetic field 15 kV/m amu
m = 0.427 m

Multistep Switcher
E = 100 kV
m = 0.352 m

Electrostatic Analyzer
E = 50 kV
m = 0.801 m

Stable Isotope Measurement

Heavy Isotope
C + C
Reaction
Switching Magnet
B = 1.2 T

Electrostatic Doublet
E = 5.1 MV
m = 3.54 m

TOF-Detector

C Detection

ERMA Separator

Magnetic Quadrupole

C + C

Terminal

Charging chain

gas stripper

E = 176 kV/m amu
m = 1.273 m

Beam profile monitor

Electrostatic Components

Beam line
Level Scheme - particle spectroscopy
Experimental Setup - particle spectroscopy

preliminary tests with single detector:

→ beam induced background too high at lower energies

→ ΔE-E particle detector telescope
Experimental Setup - particle spectroscopy

Completely separate detector volume from target using foils and sheet metal

→ Target sputtering causing large leak currents on silicon detectors
Experimental Results - particle spectroscopy

- only p channel is detected
- $^{12}\text{C}(^{12}\text{C},p_{0,1})^{23}\text{Na}$
- ΔE detector too thick
- α particles are stopped
- background tests

Background arising from hydrogen contaminations

$E = 3.5 \text{ MeV}$

$E = 1.6 \text{ MeV}$
disadvantage of particle spectroscopy:
 very poor energy resolution
 from kinematics as well as experimental technique

→ background discrimination not as „easy“ as for γ-ray spectroscopy

→ test with various beams and targets (\(^{7}\text{Li},^{9}\text{Be},^{10,11}\text{B},^{13}\text{C}\))
 no impact observed so far

but:
 water, i.e. deuterium, remains as a huge problem
Background considerations

in γ-ray spectroscopy measurements main source of background

$^{12}\text{C}(d,p\gamma)^{13}\text{C}$ or $d(^{12}\text{C},p\gamma)^{13}\text{C}$

→ Proton from this contaminant reaction lower in energy than signal

but:

→ Elastic scattering under forward angles $d(^{12}\text{C},d)^{12}\text{C}$

→ followed by $^{12}\text{C}(d,p\gamma)^{13}\text{C}$, but then at higher CM energy
Background considerations

\[^{12}\text{C}\text{ beam}\]

\[\text{detector}\]

\[\text{deuterium (water)}\text{ contamination}\]

\[\text{graphite target}\]
Background considerations

In γ-ray spectroscopy measurements main source of background

\[^{12}\text{C}(d,p\gamma)^{13}\text{C} \text{ or } d(^{12}\text{C},p\gamma)^{13}\text{C} \]

→ Proton from this contaminant reaction too low in energy

but:

→ Elastic scattering under forward angles \(d(^{12}\text{C},d)^{12}\text{C} \)

→ followed by \(^{12}\text{C}(d,p\gamma)^{13}\text{C} \), but then at higher CM energy

→ higher proton energy, in the region of \(^{12}\text{C}(^{12}\text{C},p)^{23}\text{Na} \) (!!!!)

→ checked with \(^{16}\text{O} \) beam (advantage: contamination can be monitored)
Background considerations

in γ-ray spectroscopy main source of background $^{12}\text{C}(d, p\gamma)^{13}\text{C}$ or $d(^{12}\text{C}, p\gamma)^{13}\text{C}$

Improvements:

→ all vacuum components in CF – on vacuum level of 10^{-7} mbar a build up of water is likely, at 10^{-9} mbar sputtering is faster than the build up

→ „radon“ box: experimental setup enclosed in a box flushed with argon suppression of hydrogen and nitrogen (water to a lesser extend)

→ HOPG targets: graphite almost free of hydrogen and oxygen

→ cold trap with liquid nitrogen (suppression of water)
Preliminary New Results

Influence of $^{12}\text{C}(d,p)^{13}\text{C}$ resonances

Gamow window

hydrogen “free” target

a lot need to be done!!

Courtesy Jim Zickefoose
Results $^{12}\text{C}(^{12}\text{C},p)^{23}\text{Na}$ - particle spectroscopy

- Zickefoose et al. (in prep.)
- Fit
- non-res. contribution (const. S^*-factor)

- narrow, 2.1 MeV resonance (Spillane?)
- broad resonances (no parameters known, weak constraint from the data)

Influence of low-energy resonance cannot be excluded
Results $^{12}\text{C}(^{12}\text{C},p)^{23}\text{Na}$ - particle spectroscopy

transformation of yield into cross section $\sigma(E)$

\[\sigma(E) = S(E)^* E^{-1} \exp(-87.21 E^{-1/2} - 0.46 E) \]

- low-energy resonance at 2.1 MeV compatible with Spillane et al.
 → however, measurements at lowest energies are difficult and statistic is very limited, an influence of beam-induced background still difficult to evaluate

- discrepancies with respect to Becker et al. needs further investigation

- a low-energy resonance at 1.5 MeV cannot be excluded, present data are consistent with an upper limit from Cooper et al.

- no constraint on non-resonant contribution
 → data are consistent with constant S^*-factor, but other energy dependence would also give a proper fit
comparison of the two methods

Becker et al. – proton channel

\[p_{\text{tot}} \]

\[p_0 + p_1 \]

→ constant ratio above 3 MeV – similar below?
Comparison of the two methods

At low-energies (below $E \leq 2.7$ MeV)

Particle spectroscopy

^{24}Mg

Unobserved

γ-ray spectroscopy

Indirectly observed

No $\text{tr} \rightarrow \text{e}$ reported

Situation similar for the α-channel

Observed $\sigma_{\alpha0+\alpha1} \approx 0.3 \times (\text{Becker et al., 1981})$

Observed $\sigma_{1634} \equiv 0.55 \times \sigma_{\alpha}$

(Becker et al., 1981)
comparison – total S^*-factor

from Becker et al.

calculation of the astrophysical reaction rate is in progress

comparison of $p_0 + p_1$ to total (α- and proton-channel)

- $p_0 + p_1$ contribute about 15%
 (on average)
- these values are currently used for extrapolations below 3 MeV
- large fraction of the assumed cross section at low-energy
 is not directly observed in studies

probably uncertainty from direct experiments is larger than currently assumed
Detector development
Summary

Experimental results of the $^{12}\text{C}^{(12}\text{C},p)^{23}\text{Na}$ carbon burning reaction at low energies and (a limited) overview of direct data

- astrophysical implications: stellar evolution, supernovae
- difficult measurement due to beam-induced background
- low energy limit has been moved downward
- extrapolation to astrophysical energies still uncertain
- new measurement of the α-channel (particle spec.) is on the way
- but solution of the problem will need both approaches, i.e. γ-ray and particle spectroscopy
- perspectives for measurements in an underground lab → need larger accelerator
Team and Thanks

Ruhr-Universität Bochum
Claus Rolfs, Frank Strieder, Hans-Werner Becker

Università Federico II, Napoli und Seconda Università di Napoli
Lucio Gialanella, Filippo Terrasi, Antonino Di Leva, Gianluca Imbriani,
Antonio D’Onofrio, Nicola De Cesare, Daniel Schürmann

University of Connecticut, Storrs, USA
Tim Spillane, Jim Zickefoose, Jeff Schweitzer

Osservatorio Astronomico Collurania Teramo
Oscar Straniero, Luciano Piersanti