Real-Time Simulation of Quantum Systems Driven by Dissipation

Uwe-Jens Wiese

Albert Einstein Center for Fundamental Physics
Institute for Theoretical Physics, Bern University

Advances in Diagrammatic Monte Carlo Methods
Trento, Italy, October 8, 2015

Collaboration:
Debasish Banerjee (DESY Zeuthen),
Fu-Jiun Jiang (NTNU, Taipei), Mark Kon (Boston University),
Stephan Caspar, Florian Hebenstreit,
Manes Hornung, Franziska Schranz (Bern)
Members of the Collaboration

Debasish Banerjee Fu-Jiun Jiang Mark Kon

Stephan Caspar Florian Hebenstreit
Outline

Quantum Simulation

Why is Simulating Real-Time Dynamics so Hard?

Dissipation from Measurement Processes

Simulating Purely Dissipative Real-Time Dynamics

Simulation of Transport between two Magnetization Reservoirs

Cooling into a Bose-Einstein Condensate as a Dark State

Conclusions
Outline

Quantum Simulation

Why is Simulating Real-Time Dynamics so Hard?

Dissipation from Measurement Processes

Simulating Purely Dissipative Real-Time Dynamics

Simulation of Transport between two Magnetization Reservoirs

Cooling into a Bose-Einstein Condensate as a Dark State

Conclusions
Richard Feynman’s vision of 1982

“I’m not happy with all the analyses that go with just the classical theory, because nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better make it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so easy.”
Ion traps as a digital quantum computer

Franklin Medal 2010: I. Cirac, D. Wineland, P. Zoller
Bose-Einstein condensation in ultra-cold atomic gases

Eric Cornell, Carl Wieman, Wolfgang Ketterle, 1995
Ultra-cold atoms in optical lattices as analog quantum simulators

Transition from a superfluid to a Mott insulator

Optical lattice quantum simulation of quantum spin systems

Antiferromagnetic precursors of high-\(T_c \) superconductors

LaCuO

YBaCuO

- Cu\(^{2+},Cu^{3+}\)
- O\(^2-\)
- Y\(^{3+}\)
- Ba\(^{2+}\)

Dimensions:
- \(11.6802 \) Å
- \(3.8872 \) Å
- \(3.8227 \) Å
The Hubbard Model for doped antiferromagnets

\[H = -t \sum_{\langle xy \rangle} (c_x^\dagger c_y + c_y^\dagger c_x) + U \sum_x (c_x^\dagger c_x - 1)^2, \quad c_x = \begin{pmatrix} c_{x\uparrow} \\ c_{x\downarrow} \end{pmatrix} \]

reduces to the Heisenberg model at half-filling for \(U \gg t \)

\[H = J \sum_{\langle xy \rangle} \vec{S}_x \cdot \vec{S}_y \]

Important open question:
Can the Hubbard model at low temperature be quantum simulated?
The Hubbard Model for doped antiferromagnets

$$H = -t \sum_{\langle xy \rangle} (c_x^\dagger c_y + c_y^\dagger c_x) + U \sum_x (c_x^\dagger c_x - 1)^2, \quad c_x = \begin{pmatrix} c_{x\uparrow} \\ c_{x\downarrow} \end{pmatrix}$$

reduces to the Heisenberg model at half-filling for $U \gg t$

$$H = J \sum_{\langle xy \rangle} \vec{S}_x \cdot \vec{S}_y$$

Important open question:
Can the Hubbard model at low temperature be quantum simulated?
The Hubbard Model for doped antiferromagnets

\[H = -t \sum_{\langle xy \rangle} (c_x^\dagger c_y + c_y^\dagger c_x) + U \sum_x (c_x^\dagger c_x - 1)^2, \quad c_x = \begin{pmatrix} c_x^{\uparrow} \\ c_x^{\downarrow} \end{pmatrix} \]

reduces to the Heisenberg model at half-filling for \(U \gg t \)

\[H = J \sum_{\langle xy \rangle} \vec{S}_x \cdot \vec{S}_y \]

Important open question:
Can the Hubbard model at low temperature be quantum simulated?
The Hubbard Model for doped antiferromagnets

\[H = -t \sum_{\langle xy \rangle} (c_x^\dagger c_y + c_y^\dagger c_x) + U \sum_x (c_x^\dagger c_x - 1)^2, \quad c_x = \begin{pmatrix} c_{x\uparrow} \\ c_{x\downarrow} \end{pmatrix} \]

reduces to the Heisenberg model at half-filling for \(U \gg t \)

\[H = J \sum_{\langle xy \rangle} \vec{S}_x \cdot \vec{S}_y \]

Important open question:
Can the Hubbard model at low temperature be quantum simulated?
Digital quantum simulation of Kitaev’s toric code with trapped ions using engineered dissipation

- Precisely controllable many-body quantum device, which can execute a prescribed sequence of quantum gate operations.
- State of simulated system encoded as quantum information.
- Dynamics is represented by a sequence of quantum gates, following a stroboscopic Trotter decomposition.

Outline

Quantum Simulation

Why is Simulating Real-Time Dynamics so Hard?

Dissipation from Measurement Processes

Simulating Purely Dissipative Real-Time Dynamics

Simulation of Transport between two Magnetization Reservoirs

Cooling into a Bose-Einstein Condensate as a Dark State

Conclusions
Real-time path integral describing a quench from H_0 to H

$$p_{\rho_0} [m(t)] = \frac{1}{Z_0} \text{Tr}[\exp(-\beta H_0) \exp(iHt) | m(t)\rangle \langle m(t) | \exp(-iHt)]$$

$$= \frac{1}{Z_0} \sum_{[n_0,n]} \exp(-S_{0E}[n_0]) \exp(i(S_R[n] + iS_I[n])) \delta_{n(t),m(t)}$$

$$= \frac{Z}{Z_0} \langle \cos(S_R) \delta \rangle, \quad Z_0 = \sum_{[n_0]} \exp(-S_{E}[n_0])$$

Path integral for a corresponding Euclidean ensemble

$$Z = \sum_{[n_0,n]} \exp(-S_{E}[n_0] - S_I[n])$$

Large error to signal ratio:

$$\Delta p_{\rho_0} [m(t)] = \frac{Z}{Z_0} \sqrt{\langle \cos^2(S_R) \delta^2 \rangle - \langle \cos(S_R) \delta \rangle^2} \approx \frac{Z}{Z_0} \sqrt{\langle \delta \rangle / 2}$$

$$\frac{\Delta p_{\rho_0} [m(t)]}{p_{\rho_0} [m(t)]} = \frac{\sqrt{\langle \delta \rangle / 2}}{\langle \cos(S_R) \delta \rangle} = \frac{Z \sqrt{\langle \delta \rangle / 2}}{Z_0 p_{\rho_0} [m(t)]} \sim \frac{\exp(\Delta f V t) \sqrt{\langle \delta \rangle / 2}}{p_{\rho_0} [m(t)]}$$
Real-time evolution of the density matrix of an isolated quantum system

\[
\partial_t \rho(t) = i [\rho(t), H(t)], \quad \rho(t) = U(t, t_0) \rho(t_0) U(t_0, t),
\]

\[
U(t_0, t) = \mathcal{T} \exp \left(-i \int_{t_0}^t dt' \ H(t') \right)
\]

Why is this so difficult to compute?
Real-time evolution of the density matrix of an isolated quantum system

\[\frac{\partial t}{\partial t} \rho(t) = i[\rho(t), H(t)], \quad \rho(t) = U(t, t_0)\rho(t_0)U(t_0, t), \]

\[U(t_0, t) = \mathcal{T} \exp \left(-i \int_{t_0}^{t} dt' H(t') \right) \]

Why is this so difficult to compute?

It should be easier to compute the real-time evolution when the system is under observation.
Outline

Quantum Simulation

Why is Simulating Real-Time Dynamics so Hard?

Dissipation from Measurement Processes

Simulating Purely Dissipative Real-Time Dynamics

Simulation of Transport between two Magnetization Reservoirs

Cooling into a Bose-Einstein Condensate as a Dark State

Conclusions
Measurement process of an observable O_k

$$O_k |\lambda\rangle = o_k |\lambda\rangle, \quad P_{o_k} = \sum_\lambda |\lambda\rangle\langle\lambda|,$$

$$P_{o_k}^2 = P_{o_k}, \quad \text{Tr} P_{o_k} = g_{o_k}, \quad \sum_{o_k} P_{o_k} = 1$$

Evolution of the density matrix after one measurement

$$\rho_{o_1} = P_{o_1} \rho P_{o_1}, \quad \rho' = \sum_{o_1} \rho_{o_1} = \sum_{o_1} P_{o_k} \rho P_{o_1},$$

$$\text{Tr} \rho' = \sum_{o_1} \text{Tr}(P_{o_1} \rho P_{o_1}) = \sum_{o_1} \text{Tr}(\rho P_{o_1}) = 1$$

Evolution of the density matrix after N measurements

$$\rho_{o_1,o_2,\ldots,o_N} = P_{o_N} U(t_N, t_{N-1}) \ldots U(t_3, t_2) P_{o_2} U(t_2, t_1) P_{o_1} \rho$$

$$\times P_{o_1} U(t_1, t_2) P_{o_2} U(t_2, t_3) \ldots U(t_{N-1}, t_N) P_{o_N},$$

$$\rho' = \sum_{o_1,o_2,\ldots,o_N} \rho_{o_1,o_2,\ldots,o_N}$$
Outline

Quantum Simulation

Why is Simulating Real-Time Dynamics so Hard?

Dissipation from Measurement Processes

Simulating Purely Dissipative Real-Time Dynamics

Simulation of Transport between two Magnetization Reservoirs

Cooling into a Bose-Einstein Condensate as a Dark State

Conclusions
Path integral with a Schwinger-Keldysh contour

\[
p_{\rho_0 f}(o_1, o_2, \ldots, o_N) = \sum_i p_i \langle ii | (P_{o_1} \otimes P_{o_1}^*) (P_{o_2} \otimes P_{o_2}^*) \cdots (P_{o_N} \otimes P_{o_N}^*) | ff \rangle =
\]

\[
\sum_i p_i \sum_{n_1, n'_1} \cdots \sum_{n_{N-1}, n'_{N-1}} \prod_{k=1}^N \langle n_{k-1} | P_{o_k} | n_k \rangle \langle n'_{k-1} | P_{o_k} | n'_k \rangle^*,
\]

\[
\langle n_0 n'_0 | = \langle ii |, \quad | n_N n'_N \rangle = | ff \rangle
\]
Antiferromagnetic spin $\frac{1}{2}$ quantum Heisenberg model,
$H = J \sum \langle xy \rangle \vec{S}_x \cdot \vec{S}_y$, driven by measurements of the total spin $S \in \{0, 1\}$ of adjacent spin pairs $\vec{S} = \vec{S}_x + \vec{S}_y$

$P_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad P_0 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

![Graph](image-url)
Continuous monitoring described by a Lindblad process

\[
\partial_t \rho = i[\rho, H] + \frac{1}{\varepsilon} \sum_{k, o_k} \left(L_{o_k} \rho L_{o_k}^\dagger - \frac{1}{2} L_{o_k}^\dagger L_{o_k} \rho - \frac{1}{2} \rho L_{o_k}^\dagger L_{o_k} \right)
\]

\[
= \gamma \sum_k \left(\sum_{o_k} P_{o_k} \rho P_{o_k} - \rho \right)
\]

Lindblad or Kraus quantum jump operators

\[
L_{o_k} = \sqrt{\varepsilon \gamma} P_{o_k}, \quad (1 - \varepsilon \gamma N) \mathbb{1} + \sum_{k, o_k} L_{o_k}^\dagger L_{o_k} = \mathbb{1}
\]

Equilibration of the Fourier modes of the magnetization in a dissipative process that “measures” $\vec{S}_x \cdot \vec{S}_y$

$$\tilde{S}(p) = \sum_x S_x^3 \exp(ip_1 x_1 + ip_2 x_2)$$

Equilibration of the Fourier modes of the magnetization in dissipative processes that “measure” $S^1_x S^1_y$ or $S^+_x S^+_y + S^-_x S^-_y$

Equilibration times

\[\langle |S(p)|^2 \rangle \]

\[\langle |S(p)|^2 \rangle \]

\[\gamma^{-1} \]

\[\gamma^{-1} \]

[\gamma T(p)]^{-1}

[\gamma T(p)]^{-1}

\[|\alpha| \]

\[|\alpha| \]
Staggered susceptibility $\langle M_s^2 \rangle / L^4$ and Binder ratio $\langle M_s^4 \rangle / \langle M_s^2 \rangle^2$

Staggered magnetization M_s and length scale $\xi = c/(2\pi \rho_s)$,

$\langle M_s(t)^2 \rangle = M_s(t)^2 L^4 / 3 \sum_{n=0}^3 c_n (\xi(t)/L)^n$
Outline

Quantum Simulation

Why is Simulating Real-Time Dynamics so Hard?

Dissipation from Measurement Processes

Simulating Purely Dissipative Real-Time Dynamics

Simulation of Transport between two Magnetization Reservoirs

Cooling into a Bose-Einstein Condensate as a Dark State

Conclusions
Diffusion of uniform magnetization through a hole

Diffusion of staggered magnetization through a hole
Diffusive currents derived from microscopic dynamics

\[\vec{\nabla} \rho_u = \gamma \vec{j}_u, \quad \vec{\nabla} \rho_s = \gamma \vec{j}_s \]

Continuity equations

\[\partial_t \rho_u + \vec{\nabla} \cdot \vec{j}_u = 0, \quad \partial_t \rho_s + \vec{\nabla} \cdot \vec{j}_s = 0 \]

Resulting diffusion equations

\[\partial_t \rho_u = \gamma \Delta \rho_u, \quad \partial_t \rho_s = \gamma \Delta \rho_s. \]
Analytic solution of 1-d diffusion equation
Relaxation rate as a function of hole size L

Outline

Quantum Simulation

Why is Simulating Real-Time Dynamics so Hard?

Dissipation from Measurement Processes

Simulating Purely Dissipative Real-Time Dynamics

Simulation of Transport between two Magnetization Reservoirs

Cooling into a Bose-Einstein Condensate as a Dark State

Conclusions
Cooling of $(3 + 1)$-d hard-core bosons

\[H = J \sum_{\langle xy \rangle} (S_x^+ S_y^- + S_x^- S_y^+) \]

driven by non-Hermitean Lindblad operator

\[L_1 = (S_x^+ S_y^+)(S_x^- - S_y^-) = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & -\frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad L_1^\dagger \neq L_1, \]

\[L_2 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad L_2^\dagger = L_2 \]

S. Caspar, F. Hebenstreit, UJW, in preparation.
Momentum modes of 2-point correlation function

\[C(p) = \sum_x (S_0^+ S_x^- + S_0^- S_x^+) \exp(i p x) \]

\[V=16^3, \ T_0/J=100 \]

\[\begin{align*}
\bullet & \quad (0,0,0) \\
\cdot & \quad (0,0,\pi/8) \\
\ast & \quad (0,0,\pi/4) \\
\ast & \quad (0,0,\pi/2) \\
\bullet & \quad (0,0,\pi) \\
\ast & \quad (\pi,\pi,\pi)
\end{align*} \]
Initial equilibration by diffusion $\tau \sim |p|^{-2}$
Long-time behavior of the condensate fraction

![Graph showing the long-time behavior of the condensate fraction. The graph plots f_0/V against γt, with three distinct curves indicating different behaviors at various γt values.]
Ultimate equilibration (by defect annihilation?) $\tau \sim L^3$
Outline

Quantum Simulation

Why is Simulating Real-Time Dynamics so Hard?

Dissipation from Measurement Processes

Simulating Purely Dissipative Real-Time Dynamics

Simulation of Transport between two Magnetization Reservoirs

Cooling into a Bose-Einstein Condensate as a Dark State

Conclusions
Conclusions

- Real-time simulations of some large open quantum entirely driven by dissipation or by measurement processes are sign-problem-free and can be performed using importance sampling quantum Monte Carlo.

- Such simulations have allowed us to study the time-dependence of different dissipative processes which is slowed down by conserved quantities.

- Transport processes in dissipation driven strongly correlated large open quantum spin systems lead to diffusion of magnetization or staggered magnetization from one reservoir to another.

- Lindblad processes with non-Hermitean quantum jump operators which describe cooling of bosons into a dark state can also be simulated. Different momentum modes of the Bose-Einstein condensate equilibrate at different time scales.