Real time correlation function from analytic continuation

Nicolas Wink
In collaboration with N. Strodthoff, J. M. Pawlowski

Based on
Formalism
Pawlowski, Strodthoff
Phys.Rev. D92 (2015) no.9, 094009

Finite temperature
Pawlowski, Strodthoff, NW
arxiv:1711.07444
Why real time correlation functions?

Motivation

- Resonances
- Transport peak
- Decay thresholds

Spectral function

Frequency
Why real time correlation functions?

Spectral function

Light meson spectrum

Resonances + Thresholds

Motivation

Spectral function

R. Williams, C. S. Fischer, and W. Heupel
R. Williams, C. S. Fischer, and W. Heupel
Why real time correlation functions?

Spectral function

Transport peak (+ Resonances)

Transport coefficients

PRL, 115 (2015) no.11, 112002
Christiansen, Haas, Pawlowski, Strodthoff
QCD from the FRG

Flow equation for QCD

\[\frac{d\Gamma_k}{dt} = \frac{1}{2} \]

- **Gluon**
- **Ghost**
- **Quark**
- **Mesons**

Functional Renormalization Group

\[\Gamma_{k=\Lambda} = S \]

- Non-perturbative first principle method
- Access to physical mechanisms
- No sign problem
 - Chemical potential
 - Real time

Bound states efficiently taken into account via Dynamical Hadronization

Collaborative effort **fQCD collaboration:**

QCD from the FRG

Aiming at apparent convergence

Numerics heavy \Rightarrow requirements

- Automatable workflow
- Suitable (Lorentz invariant) regulator required

Cyrol, Mitter, Pawlowski, Strodthoff, arxiv:1708.03482
Motivation

QCD from the FRG

Gluon dressing $p^2 G_{AA}(p)$

Quark dressings $1/Z(q)$ and $M(q)$

Cyrol, Mitter, Pawlowski, Strodthoff, arxiv:1708.03482
Towards real time QCD from first principles
Use analyticity constrains and KMS condition to obtain real time correlation functions from Matsubara formalism.
Replace sum by contour integral:

$$T \sum_n f(2\pi n T) = -\frac{1}{2} \oint_C dz \ f(z)[1 + 2n_B(iz)]$$

Illustrative example

Bosonic occupation number

$$\sum_T \frac{1}{(q_0 + p_0)^2 + (\epsilon_{q+p}^1)^2} \frac{1}{(q_0)^2 + (\epsilon_{q}^2)^2}$$

Continuation procedure

Nicolas Wink (ITP Heidelberg) Phase diagram of strongly interacting matter (Trento 2017)
$\frac{1}{i} \sum_{\pm} \left(\text{Res}_1^{\pm} \cdot [1 + 2n_B(-ip_0 + \epsilon_{q+p}^1)] + \text{Res}_2^{\pm} \cdot [1 + 2n_B(\epsilon_q^2)] \right)$

$p_0 = 2\pi m T \quad m \in \mathbb{Z}$

Identify ambiguity of the analytic continuation

$n_B(ip_0) = 1$

Mathematically rigorous

Analyticity off the imaginary axis

Correct decay behaviour at infinity

Unique physical analytic continuation identified by setting $n_B(ip_0) = 1$ everywhere
Remarks

- Numerically accessible
- Corresponds to a contour deformation at vanishing temperature
- Considering poles is sufficient
- Branch cuts can be mapped to poles via spectral/integral representations

\[G(p_0, \vec{p}) = \int_{\eta > 0} \frac{2\eta \rho(\eta, \vec{p})}{p_0^2 + \eta^2} \]

Strodthoff, PRD 95 (2017) no.7, 076002
Pawlowski, Strodthoff, NW, arxiv:1711.07444

Jung, Pawlowski, von Smekal, NW, work in progress
Generalisation to the FRG

Regulator poles

\[R_k(q^2) \]

No new conceptual problems

Lorentz invariant

No changes

Additional poles

Foerchinger, JHEP 1205 (2012) 021

\[\frac{1}{q^2 + m^2} \]
\[\frac{1}{q^2 + m^2 + R_k(q^2)} \]
\[\frac{1}{q^2 + m^2 + R_k(q^2 + m_r)} \]
Application to the O(N)-Model

Effective description of the lightest mesons

Calculate spectral functions of the O(N) model

\[\rho(\omega, \vec{p}) = -2 \, \text{Im} \, G_R(\omega, \vec{p}) \]

Truncation:

\[\Gamma_k = \sum_{T, q} \Delta \Gamma^{(2)}_{\sigma} + \Delta \Gamma^{(2)}_{\pi} + V(\sigma) \]

Vacuum: \[\Delta \Gamma_{\pi}^{(2)} = \Gamma_{\pi}^{(2)}(q^2) - \Gamma_{\pi}^{(2)}(0) \]

Finite Temperature: \[\Delta \Gamma_{\pi}^{(2)} = Z_{\pi} q^2 \]

Results O(N)-model
Application to the O(N)-Model

![Graph showing phase diagram of strongly interacting matter with different curves for Pion mass, Sigma mass, Order parameter, Curvature Mass, Pole Mass (Spectral function), and Pole Mass (Padé).](image)

Pawlowski, Strodthoff, NW, arxiv:1711.07444
Application to the O(N)-Model

Temperature evolution of the spectral function

Pawlowski, Strodthoff, NW, arxiv:1711.07444
Application to the O(N)-Model

Temperature evolution of the spectral function

![Graph showing temperature evolution of the spectral function](attachment:image.png)

Spectral Function [1/MeV²]

Temperature $T = 0$ MeV
- Pion
- Sigma

Frequency ω [MeV]

Pawlowski, Strodthoff, NW, arxiv:1711.07444
Application to the $O(N)$-Model

Imaginary part of the retarded two-point function

Pion

Results $O(N)$-model

Pawlowski, Strodthoff, NW, arxiv:1711.07444
Application to the O(N)-Model

Sigma meson

Imaginary part of the retarded two-point function

Pawlowski, Strodthoff, NW, arxiv:1711.07444
Application to the O(N)-Model

Finite temperature spectral function for various external momenta

Pion meson

Results O(N)-model

Pawlowski, Strodthoff, NW, arxiv:1711.07444
Application to the O(N)-Model

Finite temperature spectral function for various external momenta

Pion meson

\[P(\omega, \vec{p}) \]

\[\text{Pion} \quad T = 55 \text{ MeV} \quad \varepsilon = 0.55 \text{ MeV} \]

\[|\vec{p}| = 46 \text{ MeV} \]

\[|\vec{p}| = 414 \text{ MeV} \]

\[|\vec{p}| = 644 \text{ MeV} \]

\[|\vec{p}| = 276 \text{ MeV} \]

Pawlowski, Strodthoff, NW, arxiv:1711.07444
Application to the O(N)-Model

Finite temperature spectral function for various external momenta

![Graph](image)

Sigma meson

Parameters:
- $T = 193 \text{ MeV}$
- $\varepsilon = 0.74 \text{ MeV}$

Pawlowski, Strodthoff, NW, arxiv:1711.07444
Application to the O(N)-Model

Sigma meson

Finite temperature spectral function for various external momenta

Pawlowski, Strodthoff, NW, arxiv:1711.07444
Application to the O(N)-Model

In medium breaking of Lorentz invariance

$$\lim_{\vec{p} \to 0} \lim_{p_0 \to 0} \Gamma^{(2)}(p_0, \vec{p}) \neq \lim_{p_0 \to 0} \lim_{\vec{p} \to 0} \Gamma^{(2)}(p_0, \vec{p})$$

Sigma meson

$$T = 138 \text{ MeV}$$

Pawlowski, Strodthoff, NW, arxiv:1711.07444
Summary & Outlook

• Conceptually easy and numerically accessible algorithm

• Benchmark for finite temperature spectral function in the O(N)-model

• Bound states

• Transport coefficients

• Yang-Mills/QCD in the near future!
Application to the O(N)-Model

Vacuum spectral function

![Graph showing vacuum spectral function with different approximations: LPA, LPA', LPA' + Y, and Full. Peaks at ω = 150 MeV for π and ω = 250 MeV for σ.]
Retarded Greens function

\[
\lim_{\epsilon \to 0} G(-i(\omega + i\epsilon))
\]

Take limit analytically

Numerical extrapolation
Application to the O(N)-Model

Results O(N)-model

Pawlowski, Strodthoff, NW, arxiv:1711.07444

Nicolas Wink (ITP Heidelberg)
Phase diagram of strongly interacting matter (Trento 2017)
Application to the O(N)-Model

\[G_{\text{Euclidean}}(t,0) \left[\text{1/MeV}^2 \right] \]

- Full Range
- Pole & unitarity cut
- Landau cut

Fit parameters:
- \(m_{\text{pole}} = 152 \text{ MeV} \)
- \(m_{\text{cut}} = 92 \text{ MeV} \)
- \(B_{\text{cut}} = 137 \text{ MeV}^2 \)

Pawlowski, Strodthoff, NW, arxiv:1711.07444
Application to the O(N)-Model

![Graph showing spectral function vs frequency for different cases at T = 55 MeV and ε = 0.46 MeV. The graphs compare Pion and Sigma with 4D and 3D regulators.](attachment:image.png)
Application to the O(N)-Model

![Graph showing wave function renormalization vs. temperature.](image)

Pawlowski, Strodthoff, NW, arxiv:1711.07444