Doubly charmed baryon results from SELEX

Jürgen Engelfried

Instituto de Física
Universidad Autónoma de San Luis Potosí
Mexico

AFTER @ LHC Workshop, Trento
8 February 2013
Introduction

Charm about 15 years ago:
- The “Traditional” Charm Experiments: E791, FOCUS, SELEX, (WA89, WA92), CLEO, H1/ZEUS
- “Traditional” Topics: Production, Lifetime, rare decays, resonances in decay, $D^0 - \bar{D}^0$ mixing
- Small number of theory and phenomenology papers

In the last 10 years or so:
- New players: BaBar and Belle, CDF, D0 (beauty), LHCb, Atlas
- New charm states: double charm baryons, hidden double charm ($J/\psi c\bar{c}$), D_s^*, $X (Y, Z)$
- Penta-quark Euphoria
- Large number of “theory” papers: spectroscopy, production
- Shift of used words in papers: di-quark
Outline

1. Update on Double Charm Baryons
 - The Discovery of Double Charm Baryons
 - Features, Problems, and Solutions
 - Observation of $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-$
 - Observation of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

2. My Personal List of Mysteries in Charm and Beauty

3. Summary
Doubly Charmed Baryons

BARYONS WITH LOWEST SPIN (J = \(1/2\))

- \(\Xi_{cc}^+\)
- \(\Xi_{cc}^{++}\)
- \(\Omega_{cc}^+\)
- \(\Sigma_c^0, \Sigma_c^+\)
- \(\Delta^0, \Delta^+\)

SELEX candidates

TWO CHARMI QUARKS

- \(dsc\)
- \(ucc\)

NO CHARM QUAKE

- \(udd\)

BARYONS WITH HIGHEST SPIN (J = \(3/2\))

- \(\Omega_{cc}^{++}\)
- \(\Xi_{cc}^+\)
- \(\Xi_{cc}^{0}\)
- \(\Sigma_c^0, \Sigma_c^+\)
- \(\Delta^0, \Delta^+\)

SELEX candidate

THREE CHARM QUARKS

- \(ccc\)

TWO CHARMI QUARKS

- \(udd\)

ONE CHARMI QUARK

- \(uds\)

NO CHARM QUAKE

- \(uss\)
Update on Double Charm Baryons
My Personal List of Mysteries in Charm and Beauty
Summary

The Discovery of Double Charm Baryons
Features, Problems, and Solutions
Observation of $\Xi^{+}_{cc} \rightarrow \Xi^{+}_{c} \pi^{+} \pi^{-}$
Observation of $\Xi^{++}_{cc} \rightarrow \Lambda^{+}_{c} K^{-} \pi^{+} \pi^{-} + \Xi^{+}_{c} \pi^{-} \pi^{+} \pi^{-}$

Model Predictions for DCB Masses

- Several Authors (Bjorken 1986, Fleck & Richard 1989, Roncaglia 1995, Ellis 2002)

- Different models (Phenomenology, Bag, Quarkonium, Lattice)

Overall Features

- ground states near 3.6 GeV/c^2

- ground states Isospin=1/2 multiplets degenerate

- Hyperfine splitting around 60 – 120 MeV/c^2

- Most predict electromagnetic hyperfine transition (but some pionic)

- Model dependent predictions for orbital and radial excitations
The SELEX Collaboration

G.P. Thomas
Ball State University, Muncie, IN 47306, U.S.A.
E. Gülmez
Bogazici University, Bebek 80815 Istanbul, Turkey
Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A.
A.M.F. Endler
Centro Brasilierno de Pesquisas Físicas, Rio de Janeiro, Brazil
P.S. Cooper, J. Kilmer, S. Kwan, J. Lach, E. Ramberg, D. Skow, L. Stutte
Fermilab, Batavia, IL 60510, U.S.A.
V.P. Kubarovsky, V.F. Kurshetsov, A.P. Kozhevnikov, L.G. Landsberg, V.V. Molchanov, S.B. Nurushev, S.I. Petrenko, A.N. Vasiliev, D.V. Vavilov, V.A. Victorov
Institute for High Energy Physics, protvino, Russia
Li Yunshan, Mao Chensheng, Zhao Wenheng, He Kangling, Zheng Shuchen, Mao Zhenlin
Institute of High Energy Physics, Beijing, P.R. China
Institute of Theoretical and Experimental Physics, Moscow, Russia
U. Dersch, I. Eschrich, I. Konorov, H. Krüger, J. Simon, K. Vorwalter, Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
I.S. Filimonov, E.M. Leikin, A.V. Nemitkin, V.I. Rud
Moscow State University, Moscow, Russia
Petersburg Nuclear Physics Institute, St. Petersburg, Russia
I. Giller, M.A. Moinester, A. Ocherashvili, V. Steiner
Tel Aviv University, 69978 Ramat Aviv, Israel
Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
M. Luksys
Universidade Federal da Paraíba, Paraíba, Brazil
V.J. Smith
University of Bristol, Bristol BS8 1TL, United Kingdom
University of Iowa, Iowa City, IA 52242, U.S.A.
L.J. Dauwe
University of Michigan-Flint, Flint, MI 48502, U.S.A.
M. Gaspero, M. Iori
University of Rome “La Sapienza” and INFN, Rome, Italy
University of São Paulo, São Paulo, Brazil
A. Lamberto, A. Penzo, G.F. Rappazzo, P. Schiavon
University of Trieste and INFN, Trieste, Italy
Update on Double Charm Baryons
My Personal List of Mysteries in Charm and Beauty

Summary
The Discovery of Double Charm Baryons
Features, Problems, and Solutions
Observation of $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-$
Observation of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

- Forward ($x_F > 0.1$) charm production
- Σ^-, π^\pm, p beam at 600 GeV/c
- RICH PID above ~ 22 GeV/c
- 20 plane Si-Vertex.
- Data taken 1996/7
Hyperon Beam

- 800 GeV/c protons from Tevatron
- \(\sim 40 \text{ cm long Be-Target (} \sim 1 \text{ Interaction Length)} \)
- \(\sim 7.3 \text{ m, } B = 3.5 \text{ T Magnet with Tungsten filling} \)
- curved slit with \(\sim 1.5 \text{ mm opening at thinnest point} \)
- 650 GeV/c nominal, 610 GeV/c mean
- Beam composition: neg 50/50 \(\Sigma^-/\pi^- \), pos 92/8 \(p/\pi^+ \)
- Tagging with a TRD
- Rates: \(10^{12} \) Protons per 20 sec spill, \(5 \cdot 10^5/\text{sec} \) at charm target
Update on Double Charm Baryons
My Personal List of Mysteries in Charm and Beauty

Summary

The Discovery of Double Charm Baryons
Features, Problems, and Solutions
Observation of $\Xi_{cc}^{+} \rightarrow \Xi_{c}^{+} \pi^{+} \pi^{-}$
Observation of $\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}, \Xi_{c}^{+} \pi^{-} \pi^{+} \pi^{+}$

Vertex Spectrometer Performance

- transverse vtx resolution 8-15 μm
- 20 highly-efficient vertex planes over-determine tracks, reduce tracking confusion in high-multiplicity events
- target foils 0.8-2.2 mm thick with 1.5 cm spacing to localize primary interaction
- Lifetime resolution 20 – 40 fs depending on particle/mode

Jürgen Engelfried
DCB
Update on Double Charm Baryons
My Personal List of Mysteries in Charm and Beauty

Summary

The Discovery of Double Charm Baryons
Features, Problems, and Solutions

Observation of $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-$
Observation of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+, \Xi_c^+ \pi^- \pi^+ \pi^+$

Ring Imaging Cherenkov Counter Performance (1)
Update on Double Charm Baryons
My Personal List of Mysteries in Charm and Beauty

Summary

The Discovery of Double Charm Baryons
Features, Problems, and Solutions
Observation of $\Xi_{cc}^{+} \rightarrow \Xi_{c}^{+} \pi^{+} \pi^{-}$
Observation of $\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}$, $\Xi_{c}^{+} \pi^{-} \pi^{+} \pi^{+}$

Ring Imaging Cherenkov Counter Performance (2)

Proton efficiency

Proton momentum [GeV/c]

$N / 1 \text{MeV/c}^2$

Efficiency

$P(K)$, [GeV/c]

$M(K^+K^-)$, [GeV/c2]

$4346 \pm 225 \phi$

$4206 \pm 126 \phi$

$3896 \pm 96 \phi$
The Discovery of Double Charm Baryons

Summary

The Discovery of Double Charm Baryons
Features, Problems, and Solutions
Observation of $\Xi^{+}_{cc} \rightarrow \Xi^{+}_c \pi^+ \pi^-$
Observation of $\Xi^{++}_{cc} \rightarrow \Lambda^+_c K^- \pi^+ \pi^+, \Xi^+_c \pi^- \pi^+ \pi^+$

SELEX Single Charm Analysis

Charm Analysis Cuts

- Decay vertex separation significance L/σ
- Charm vector momentum points back to primary: cut on $(b/\sigma_b)^2$ (point-back cut)
- Decay vertex lies outside target material
- Proton and Kaon identified in RICH detector
SELEX Charm Selection Criteria

Charm Selection Cuts for single charm studies:

- secondary vertex significance:
 - $L/\sigma \geq 1$
 - short-lived states (Ξ^0_c, Ω^0_c)
 - $L/\sigma \geq 8$
 - long-lived states (Λ^+_c, D^+)

- Pointback $\leq 4 \ (2\sigma_b)$

- second-largest miss significance among decay tracks ≥ 4.

Update on Double Charm Baryons
My Personal List of Mysteries in Charm and Beauty

Summary

The Discovery of Double Charm Baryons
Features, Problems, and Solutions
Observation of $\Xi^{+}_{cc} \rightarrow \Xi^+_c \pi^+ \pi^-$
Observation of $\Xi^{++}_{cc} \rightarrow \Lambda^+_c K^- \pi^+ \pi^+, \Xi^{+}_c \pi^- \pi^+ \pi^+$
ccq decays to csqud. Look for charm, strange and baryon in final state. SELEX started with $\Lambda_c^+ K^- \pi^+ (\pi^+)$. Look for new secondary vertex between primary and Λ_c^+

- no RICH PID on new $K^- \pi^+$ tracks (too soft)
- All other cuts fixed from previous searches
SELEX: Experimental Evidence from 2002

SELEX reported 3 significant high mass peaks

SELEX argued that these states are doubly-charmed baryons

Update on Double Charm Baryons
My Personal List of Mysteries in Charm and Beauty
Summary

The Discovery of Double Charm Baryons
Features, Problems, and Solutions
Observation of $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-$
Observation of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+ , \Xi_c^+ \pi^- \pi^+ \pi^+$
Update on Double Charm Baryons
My Personal List of Mysteries in Charm and Beauty
Summary
The Discovery of Double Charm Baryons
Features, Problems, and Solutions
Observation of $\Xi_{cc}^{+} \rightarrow \Xi_{c}^{+} \pi^{+} \pi^{-}$
Observation of $\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{-}, \Xi_{cc}^{+} \pi^{-} \pi^{+} \pi^{+}$

First Observation of the Doubly Charmed Baryon Ξ_{cc}^{+}

(SELEX Collaboration)
An exited state and a pair of isodoublets?

\[\Lambda_c^+ K^- \pi^+ \]

\[\Lambda_c^+ K^- \pi^+ \pi^+ \]

3780 MeV (1/2–)

260 MeV

337 MeV

\[\Lambda_c^+ K^- \pi^+ \]

3520 MeV (1/2–)

\[\Lambda_c^+ K^- \pi^+ \pi^+ \]

3541 MeV

78 MeV

\[\Lambda_c^+ K^- \pi^+ \pi^+ \]

3460 MeV (L=0)

\[\Lambda_c^+ K^- \pi^+ \pi^+ \]

3443 MeV (1/2–)

\[\Lambda_c^+ K^- \pi^+ \pi^+ \]

3520 MeV (1/2–)

\[\Lambda_c^+ K^- \pi^+ \pi^+ \]

3443 MeV (1/2–)

\[\Lambda_c^+ K^- \pi^+ \pi^+ \]

3460 MeV (L=0)

\[\Lambda_c^+ K^- \pi^+ \pi^+ \]

3520 MeV (1/2–)

\[\Lambda_c^+ K^- \pi^+ \pi^+ \]

3443 MeV (1/2–)
Features and Problems in Original Analysis. . .

- All Signals have very low statistics
- There is nearly no background (→ difficult to determine)
- Entries in histograms only from baryon \((\Sigma^-\text{, proton})\) beams
- Other experiments do not see the states
 (but: nobody else has baryon beams. . .)
- Lifetime is short \((< 33 \text{ fs})\)
All Signals have very low statistics
There is nearly no background (→ difficult to determine)
Entries in histograms only from baryon (Σ^-, proton) beams
Other experiments do not see the states
(but: nobody else has baryon beams...)
Lifetime is short (< 33 fs)
Features and Problems in Original Analysis.

- All Signals have very low statistics
- There is nearly no background (→ difficult to determine)
- Entries in histograms only from baryon (Σ^-, proton) beams
- Other experiments do not see the states (but: nobody else has baryon beams...)
- Lifetime is short (< 33 fs)
Features and Problems in Original Analysis...

- All Signals have very low statistics
- There is nearly no background (→ difficult to determine)
- Entries in histograms only from baryon (Σ^-, proton) beams
- Other experiments do not see the states (but: nobody else has baryon beams...)
- Lifetime is short (< 33 fs)
Features and Problems in Original Analysis...

- All Signals have very low statistics
- There is nearly no background (→ difficult to determine)
- Entries in histograms only from baryon (Σ^-, proton) beams
- Other experiments do not see the states (but: nobody else has baryon beams...)
- Lifetime is short (< 33 fs)
... and Possible Solutions

- Look for other decay modes to confirm DCB hypothesis
- Develop new method for background determination
- Include single-charm in vertex fit of double-charm vertex
- Redo full analysis chain to increase statistics
... and Possible Solutions

- Look for other decay modes to confirm DCB hypothesis
- Develop new method for background determination
- Include single-charm in vertex fit of double-charm vertex
- Redo full analysis chain to increase statistics
...and Possible Solutions

- Look for other decay modes to confirm DCB hypothesis
- Develop new method for background determination
- Include single-charm in vertex fit of double-charm vertex
- Redo full analysis chain to increase statistics
The Discovery of Double Charm Baryons
Features, Problems, and Solutions
Observation of $\Xi^{+}_{cc} \rightarrow \Xi^{+}_{c} \pi^{+} \pi^{-}$
Observation of $\Xi^{++}_{cc} \rightarrow \Lambda^{+}_{c} \pi^{-} \pi^{+} \pi^{0}$, $\Xi^{0}_{c} \pi^{-} \pi^{+} \pi^{0}$

...and Possible Solutions

- Look for other decay modes to confirm DCB hypothesis
- Develop new method for background determination
- Include single-charm in vertex fit of double-charm vertex
- Redo full analysis chain to increase statistics
Other Decay Modes of Double Charm Baryons

Cabibbo allowed decay of Ξ_{cc}^+:

\[
\begin{array}{c}
\Xi_{cc}^+ \\
\uparrow u \\
W^+ \\
\downarrow \bar{d} \\
\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+ \\
\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+ \pi^- \\
\Xi_{cc}^+ \rightarrow pD^+ K^- \\
\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^- \pi^+ \\
\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^+ \pi^- \\
\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^- \pi^+ \pi^- \\
\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^- \pi^+ \pi^+ \\
\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^- \pi^+ \pi^- \\
\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^- \pi^+ \pi^+ \pi^- \\
\end{array}
\]

In Final State:

- Baryon
- Quarks $csd\bar{d}$
- Plus pairs from sea
- Cascaded decay chain
Other Decay Modes of Double Charm Baryons

Cabibbo allowed decay of Ξ^{+}_{cc}:

In Final State:

- Baryon
- Quarks $c s d u \bar{d}$
- Plus pairs from sea
- Cascaded decay chain

Easily accessible in SELEX:

$$\Xi^{+}_{cc} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+}$$
$$\Xi^{+}_{cc} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+} \pi^{-}$$
$$\Xi^{+}_{cc} \rightarrow pD^{+} K^{-}$$
$$\Xi^{+}_{cc} \rightarrow \Xi^{+}_{c} \pi^{-} \pi^{+}$$

$$\Xi^{++}_{cc} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+} \pi^{+}$$
$$\Xi^{++}_{cc} \rightarrow pD^{+} K^{-} \pi^{+} (?)$$
$$\Xi^{++}_{cc} \rightarrow \Xi^{+}_{c} \pi^{+}$$
$$\Xi^{++}_{cc} \rightarrow \Xi^{+}_{c} \pi^{+} \pi^{+} \pi^{-}$$

$$\Omega^{+}_{cc} \rightarrow \Xi^{+}_{c} K^{-} \pi^{+}$$
$$\Omega^{+}_{cc} \rightarrow \Xi^{+}_{c} K^{-} \pi^{+} \pi^{+} \pi^{-}$$
Other Decay Modes of Double Charm Baryons

Cabibbo allowed decay of Ξ^{+}_{cc}:

\[
\begin{align*}
\Xi^{+}_{cc} & \rightarrow \Lambda^{+}_{c} K^{-} \pi^{+} \\
\Xi^{+}_{cc} & \rightarrow \Lambda^{+}_{c} K^{-} \pi^{+} \pi^{+} \pi^{-} \\
\Xi^{+}_{cc} & \rightarrow pD^{+} K^{-} \\
\Xi^{+}_{cc} & \rightarrow \Xi^{+} \pi^{-} \pi^{+}
\end{align*}
\]

Easily accessible in SELEX:

\[
\begin{align*}
\Xi^{+}_{cc} & \rightarrow \Lambda^{+}_{c} K^{-} \pi^{+} \\
\Xi^{+}_{cc} & \rightarrow \Lambda^{+}_{c} K^{-} \pi^{+} \pi^{+} \pi^{-} \\
\Xi^{+}_{cc} & \rightarrow pD^{+} K^{-} \pi^{+} (?) \\
\Xi^{+}_{cc} & \rightarrow \Xi^{+} \pi^{+} \\
\Xi^{+}_{cc} & \rightarrow \Xi^{+} \pi^{+} \pi^{+} \pi^{-} \\
\Omega^{+}_{cc} & \rightarrow \Xi^{+} K^{-} \pi^{+} \\
\Omega^{+}_{cc} & \rightarrow \Xi^{+} K^{-} \pi^{+} \pi^{+} \pi^{-}
\end{align*}
\]

In Final State:

- Baryon
- Quarks $csdud$ plus pairs from sea
- Cascaded decay chain
Update on Double Charm Baryons
My Personal List of Mysteries in Charm and Beauty

Summary

The Discovery of Double Charm Baryons
Features, Problems, and Solutions
Observation of $\Xi_{cc}^{+} \rightarrow \Xi_{c}^{+} \pi^{+} \pi^{-}$
Observation of $\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}, \Xi_{c}^{+} \pi^{-} \pi^{+} \pi^{+}$

$\Xi_{cc}^{+} \rightarrow pD^{+}K^{-}$ (PLB628 (2005) 18)
Background Determination: Event Mixing

- First decay vertex close to primary vertex: assume all bkgd is combinatoric
- Make combinatoric bkgd by taking first decay vertex from one event, second from other
- Use each single-charm event 25 times to increase statistics

Resulting combinatoric bkgd is absolutely normalized \(\Rightarrow \) Bkgd shape known

- \(\Xi_{cc}^+ \) Decay Schematic

* Peak mass: 3516 MeV
* 4-bin Poisson Prob < 6.4 \(\times 10^{-3} \)
* \(L/\sigma > 1.0 \)

PLB628 (2005) 18
The Discovery of Double Charm Baryons
Features, Problems, and Solutions

Update on Double Charm Baryons
My Personal List of Mysteries in Charm and Beauty

Summary

The Discovery of Double Charm Baryons
Features, Problems, and Solutions

Observation of \(\Xi_{cc}^{+} \rightarrow \Xi_{c}^{+}\pi^{+}\pi^{-} \)
Observation of \(\Xi_{cc}^{++} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+}, \Xi_{c}^{+}\pi^{-}\pi^{+}\pi^{+} \)

\(\Xi_{cc}^{+} \rightarrow \Lambda_{c}^{+}K^{-}\pi^{+} \) – New Analysis

Re-analysis of full data set ⇒ More \(\Lambda_{c} \) cands (1630 → 2450)

- Refit \(\Xi_{cc}^{+} \) vertex using \(\vec{p}_{\Lambda_{c}^{+}} \) together with \(K^{-}\pi^{+} \) tracks ⇒ Better \(L_{1} \) resolution
- Use event mixing for background
Update on Double Charm Baryons
My Personal List of Mysteries in Charm and Beauty
Summary

The Discovery of Double Charm Baryons
Features, Problems, and Solutions

Observation of $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-$
Observation of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+ \pi^-$

$\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$, $\Lambda_c^+ \rightarrow pK^- \pi^+ \pi^+ \pi^+$ – New Analysis

Jürgen Engelfried
DCB
33/51
Features of new Analysis

- **Re-Analysis and Relaxing Cuts on Single Charm:**
 - some more background, but shape is well understood from combinatoric analysis
 - more signal

- **Improved sec. vertex resolution:**
 - Cleaner Signals, access to other modes
 - Possibility (but challenging) to measure lifetime (is around 1 σ)
Update on Double Charm Baryons

My Personal List of Mysteries in Charm and Beauty

Summary

The Discovery of Double Charm Baryons

Features, Problems, and Solutions

Observation of $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-$

Observation of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+ , \Xi_c^+ \pi^- \pi^+ \pi^+$

$\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^- - $ First Observation

FIRST OBSERVATION: $\Xi_{cc}^+ \rightarrow \Xi_c^+ \pi^+ \pi^-, \Xi_c^+ \rightarrow pK^- \pi^+$
Observation of \(\Xi^{+} \rightarrow \Xi^{+}_{c} \pi^{+} \pi^{−} \)
Observation of \(\Xi^{++} \rightarrow \Lambda^{+}_{c} K^{−} \pi^{+} \pi^{+}, \Xi^{+}_{c} \pi^{−} \pi^{+} \pi^{+} \)
Comparing the Mass of the Three Decay Modes

\[\Lambda^{+}_{c} K^{+} \pi^{+} L_{1}/\sigma > 1.8 \]
\[Mass \ 3521.8 \pm 1.7 \text{ MeV}/c^2 \]
\[\Xi^{+}_{c} K^{−} \pi^{+} L_{1}/\sigma > 0. \]
\[p D^{+} K^{−} L_{1}/\sigma > 1. \]
Observation of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$

- If we have a ccd state (Ξ_{cc}^+), there has to be a ccu state as well (Ξ_{cc}^{++})
- Look in $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$
- Use same cuts as before
 - Use same code
 - Just ask for one more π^+

Green: Absolutely-normalized background
Gaussian with fixed width (MC)

New Ξ_{cc}^{++} at 3452 MeV/c²!
Observation of $\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+} \pi^{-} \pi^{+} \pi^{+}$

- Now look in $\Xi_{c}^{+} \pi^{-} \pi^{+} \pi^{+}$
- Same as before, ask for additional π^{+}
- Only use $\Xi_{c}^{+} \rightarrow pK^{-}\pi^{+}$

- Add data from both modes
- Significance 6.5σ
- Mixed event background describes sidebands
\[\Xi_{cc}(3780)^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+ \]

- Re-Analyzed Data
- Restrict to \(\Sigma^- \)–Beam
- Peak wider than Resolution
- Half decay to \(\Xi_{cc}(3520) \)
- Still working on Details
Why weakly decaying Doublet?

- If Excitation is Chromomagnetic:
 - Expect dominant M1 Dipole Transition (like in $D^* \rightarrow D\gamma$)
 - Weak decay of Chromomagnetic Excited State Suppressed by ~ 6 orders of magnitude

- Bardeen, Eichten and Hill: spectroscopy of cc compared to $c\bar{s}$ (PRD68 054024, hep-ph/0305049)

Ground State: $J^P = \frac{1^+}{2} \left[c \uparrow c \uparrow L = 0, J^P = 1^+ \right] q \downarrow$

Excited State: $J^P = \frac{1^-}{2} \left[c \uparrow c \downarrow L = 1, J^P = 1^- \right] q \downarrow$

- First excited state is $L = 1$ of heavy (cc) di-quark
- In at least one version of the model splitting is consistent with observed 78 MeV/c^2
- First EM transition is M2.
Doubly Charmed Baryons Production

- SELEX: Dominantly produced by baryon beam.
- E791 has looked in 250 GeV/c \(\pi^-\) production
 no signal
- FOCUS looked in 250 GeV/c photo-production
 no signal
- BaBar looked:
 no signal
- Waiting for LHCb upgrade... or After?
- Hadro-Production Theory/Phenomenology:
 Most just assume independent production
 But: Are intrinsic components important?
My Personal List of Mysteries in Charm and Beauty

Mysteries: Observations which have no commonly accepted explanation within the usually accepted theory.
Charm Mysteries (1) – Discovery of the Ξ_c^+

- Beam: 135 GeV/c Σ^-
- 3 weeks of running
- no silicon detectors
- 83 events $\Xi_c^+ \rightarrow \Lambda K^- \pi^+ \pi^+$
- measured Ξ_c^+ lifetime correctly
Beauty Mysteries – Λ_b at ISR

CERN-ISR R422 (Split Field Magnet), 1988/1991

\[\Lambda_b^0 \rightarrow pD^0\pi^- \]

\[\Lambda_b^0 \rightarrow \Lambda_c^+\pi^+\pi^-\pi^- \]

Il Nuovo Cimento 104, 1787
(Double)-Charm Mysteries (2) – $J/\psi \eta_c$ Production

- Belle observed high double charm production in
 \[e^+ e^- \rightarrow J/\psi \ c\bar{c}, \]
 \[e^+ e^- \rightarrow J/\psi \ \eta_c \]
 (PRL 89 (2002) 142001)

- At publication, ×40 higher cross section than theory

- BaBar confirms a few years later

- Today still x10 higher

- From Vato: In LHCb double-J/ψ also not understood
Charm Mysteries (3) – Narrow D_s Resonances

BaBar, CLEO, Belle (2003)

$D_{sJ}^*(2315) \rightarrow D_s \pi^0$,
$D_{sJ}(2463) \rightarrow D_s \gamma \pi^0$

PRL90 (hep-ex/0304021);
PRD68;
PRL91 (hep-ex/0308019)

SELEX 2004

$D_{sJ}^*(2632) \rightarrow D_s^+ \eta$ and $D^0 K^+$

PRL 93, 242001 (hep-ex/0406045)
Charmonium-like states
Are they Charmonium? Are they Tetra-quark states?
Do the charged states (observed by Belle) really exist?
Baryon Mysteries – “Missing” Resonances

- Experiments at Jefferson Lab (and other places) search for Baryon Resonances
- About half the states predicted by $SU(6)_{SF} \times SO(3)$ are missing
- $SU(6)_{SF} \times SO(3)$ is non-relativistic, spin and angular momentum are separate.
- Other schemes predicting the correct number of resonances exist (e.g. $SU(3)_F \times SO(3, 1)$, $SO(3, 1)$ is Lorentz-Group)
Conclusions – Double Charm Baryons

- SELEX is still the only experiment observing Double Charm Baryons (until LHCb trigger upgrade?)

- Published results on $\Xi^{+}_{cc} \rightarrow \Lambda^{+}_{c} K^{-} \pi^{+}, \Xi^{+}_{cc} \rightarrow pD^{+} K^{-}$

- SELEX is re-analyzing the data, with improved efficiency

- Presented $\Xi^{+}_{cc} \rightarrow \Lambda^{+}_{c} K^{-} \pi^{+}, \Xi^{+}_{cc} \rightarrow \Xi^{+}_{c} \pi^{-} \pi^{+}$
- Presented $\Xi^{++}_{cc} \rightarrow \Lambda^{+}_{c} K^{-} \pi^{+} \pi^{+}, \Xi^{++}_{cc} \rightarrow \Xi^{+}_{c} \pi^{-} \pi^{+} \pi^{+}$

- Working on determination of the Ξ_{cc} Lifetime
- Searching for Ω^{+}_{cc}
Conclusions

Ongoing Analyses in SELEX:

- Working on Double Charm Baryons
- Study of Charm Hadro-Production
- Preliminary result on semi-leptonic decay of Λ_c^+
- Study Cabibbo Suppressed Decays of charm baryons
 - First Observation of $\Xi_c^+ \rightarrow \Sigma^+ \pi^- \pi^+, \Xi_c^+ \rightarrow \Sigma^- \pi^+ \pi^+$
 - More modes to come...
My Personal Wishlist for Theorists and Phenomenologists

- What is the correct potential (model) for heavy-light systems?
- What is the correct potential in charmonium?
- How to transfer this to double-heavy baryons? ($c\bar{c} \rightarrow cc$)
- Make a good pre(post)diction of the mass of the Ξ_{cc}
- What is the mass difference between Ξ_{cc}^+ and Ξ_{cc}^{++} (including sign!)?
- What are the quantum numbers of the lowest exited state of the Ξ_{cc}?
- I do not care how you calculate it (HQET, Lattice, . . .), JUST DO IT
- In this field, Experiments are Ahead!