A few things about the nuclear shell structure

T. Duguet

CEA/IRFU/SPhN, France
NSCL and Michigan State University, USA

Nuclear Structure and Astrophysical Applications, July 8-12 2013, ECT*
Question of interest and punch line

Are there elements of the theory that cannot be fixed by experiment?

- **Realism versus Instrumentalism**
 - An element unambiguously defined within the theory...
 - ... that can be changed at will without changing observables
- True within quantum mechanics and quantum field theory, e.g.
 - **Nuclear shell structure** \(\{e_{nljq}\} \)
 - **Partitioning** \(\vec{J}^g = \vec{S}^g + \vec{L}^g \) of gluon contribution to \(\vec{J}^\text{proton}_{QCD} \)

Two different levels of model dependency

- **Within an exact theory** = what we are talking about here
 - \(\{e_{nljq}\} \) from any mean-field approximation is disqualified from the outset!
 - Fundamental model dependency
- **As a result of an approximation** = NOT what we are talking about here
 - Not a fundamental model dependency
 - Very important in practice of course
- Both can cumulate! It is the case for \(\{e_{nljq}\}, \{SF^\pm_k\} \)...
Question of interest and punch line

Are there elements of the theory that cannot be fixed by experiment?

- Realism versus Instrumentalism
 - An element unambiguously defined within the theory…
 - …that can be changed at will without changing observables
- True within quantum mechanics and quantum field theory, e.g.
 - Nuclear shell structure \(\{e_{nljq}\}\)

 - Partitioning \(\vec{J}_g = \vec{S}_g + \vec{L}_g\) of gluon contribution to \(\vec{J}_{QCD}^{\text{proton}}\)

Two different levels of model dependency

- **Within an exact theory** = what we are talking about here
 - \(\{e_{nljq}\}\) from any mean-field approximation is disqualified from the outset!
 - Fundamental model dependency
- **As a result of an approximation** = NOT what we are talking about here
 - Not a fundamental model dependency
 - Very important in practice of course
- Both can cumulate! It is the case for \(\{e_{nljq}\}, \{SF^\pm_k\}\)…

Nuclear shell structure
Outline

1. Appropriate definition
2. Non observability
3. Practical reconstruction
Outline

1. Appropriate definition
2. Non observability
3. Practical reconstruction
Key considerations

Motivations to refer to \(\{e_{nljq}\} \)

- Pillar of our understanding
- Drives the quest for exotic nuclei

Problem one actually deals with

Many-body Schroedinger equation

\[
H |\Psi^A_k \rangle = E^A_k |\Psi^A_k \rangle
\]

- One-nucleon addition/removal
 \(E_k^{\pm} \equiv \pm (E_k^{A \pm 1} - E_k^A) \) and \(\sigma_k^{\pm} \)
- Excitations (e.g. \(k \equiv 2^+ \))
 \(\Delta E^A_{0 \rightarrow k} \equiv E^A_k - E^A_0 \) and \(\sigma^A_{0 \rightarrow k} \)

Connection to many-body observable?

Can \(B = \{\epsilon_p\} \) be defined

- only from \(A = \{E_k^{\pm} / |\Psi^A_0 \rangle; |\Psi^A_{k \pm 1} \rangle\} \)?
- not as a zeroth-order approximation!

Partitioning between "uncorrelated contribution" and "correlations"?

Outcome of Schr. equation \(A \)

\[
\begin{aligned}
\{E_k^{\pm} / |\Psi^A_0 \rangle; |\Psi^A_{k \pm 1} \rangle\}
\end{aligned}
\]

\(\iff \)

Ind. particle contribution \(B \)

\[
\{\epsilon_p / |\Phi^A_0 \rangle; |\Phi^A_{p \pm 1} \rangle\}
\]

"The rest" \(C \)

\[
\{\Delta E^p_{k \rightarrow 0} / \delta |\Phi^p_k \rangle\}
\]
Key considerations

Motivations to refer to \{e_{nijq}\}
- Pillar of our understanding
- Drives the quest for exotic nuclei

Problem one actually deals with

Many-body Schroedinger equation

\[H|\Psi^A_k\rangle = E^A_k|\Psi^A_k\rangle \]
- One-nucleon addition/removal
 \[E^\pm_k \equiv \pm(E^A_{k+1} - E^A_k) \] and \[\sigma^\pm_k \]
- Excitations (e.g. \(k \equiv 2^+ \))
 \[\Delta E^A_{0\rightarrow k} \equiv E^A_k - E^A_0 \] and \[\sigma^A_{0\rightarrow k} \]

Connection to many-body observable?

\[\text{Can } B = \{\epsilon_p\} \text{ be defined} \]
- only from \(A = \{E^\pm_k / |\Psi^A_0\rangle ; |\Psi^A_{k+1}\rangle\} \)?
- not as a zeroth-order approximation?

Partitioning between "uncorrelated contribution" and "correlations"?

\[A \]
\[\{E^\pm_k / |\Psi^A_0\rangle ; |\Psi^A_{k+1}\rangle\} \]
- \(B \)
\[\{\epsilon_p / |\Phi^A_0\rangle ; |\Phi^A_{k+1}\rangle\} \]
- "The rest"
\[C \]
\[\{\Delta E^p_k / |\delta\Phi^p_k\rangle\} \]
Key considerations

Motivations to refer to \(\{e_{nljq}\} \)
- Pillar of our understanding
- Drives the quest for exotic nuclei

Problem one actually deals with

Many-body Schroedinger equation

\[
H|\Psi^A_k\rangle = E^A_k |\Psi^A_k\rangle
\]

- One-nucleon addition/removal
 \(E^\pm_k \equiv \pm(E^A_{k\pm1} - E^A_0) \) and \(\sigma^\pm_k \)
- Excitations (e.g. \(k \equiv 2^+ \))
 \(\Delta E^A_{0\rightarrow k} \equiv E^A_k - E^A_0 \) and \(\sigma^A_{0\rightarrow k} \)

Connection to many-body observable?

Can \(B = \{\epsilon_p\} \) be defined

1. only from \(A = \{E^\pm_k / |\Psi^A_0\rangle; |\Psi^A_{k\pm1}\rangle\} \)?
2. not as a zeroth-order approximation?

Partitioning between "uncorrelated contribution" and "correlations"?

Outcome of Schr. equation \(A \)

\[\{E^\pm_k / |\Psi^A_0\rangle; |\Psi^A_{k\pm1}\rangle\} \]

Ind. particle contribution \(B \)

\[\{\epsilon_p / |\Phi^A_0\rangle; |\Phi^A_{p\pm1}\rangle\} \]

"The rest" \(C \)

\[\{\Delta E^p_k / \delta|\Phi^p_k\rangle\} \]
Baranger definition of effective Single-particle energies

Motivations to refer to \(\{e_{nljq}\} \)
- Pillar of our understanding
- Drives the quest for exotic nuclei

Problem one actually deals with

Many-body Schroedinger equation

\[
H |\Psi^A_k\rangle = E^A_k |\Psi^A_k\rangle
\]

- One-nucleon addition/removal
 \[E^\pm_k \equiv \pm (E^A_{k+1} - E^A_{0}) \mbox{ and } \sigma^\pm_k \]
- Excitations (e.g. \(k \equiv 2^+ \))
 \[\Delta E^A_{0 \rightarrow k} \equiv E^A_k - E^A_{0} \mbox{ and } \sigma^A_{0 \rightarrow k} \]

Connection to many-body observable?

[Spectroscopic probability matrices]

\[
S^+_{\mu pq} = \langle \Psi^A_0 | a_p | \Psi^A_{\mu+1} \rangle \langle \Psi^A_{\mu+1} | a_q^\dagger | \Psi^A_0 \rangle \\
S^-_{\nu pq} = \langle \Psi^A_0 | a_q^\dagger | \Psi^A_{-\nu-1} \rangle \langle \Psi^A_{-\nu-1} | a_p | \Psi^A_0 \rangle
\]

[Sum rule and one-body centroid field]

\[
1 = \sum_{\mu} S^+_{\mu} + \sum_{\nu} S^-_{\nu} \\
\hbar^{\text{cent}} = \sum_{\mu} S^+_{\mu} E^+_{\mu} + \sum_{\nu} S^-_{\nu} E^-_{\nu} = T + \Sigma(\infty)
\]

[Spectroscopic factors]

\[
SF^+_\mu \equiv \text{Tr}[S^+_\mu] \\
SF^-_\nu \equiv \text{Tr}[S^-_\nu]
\]

[ESPE]

\[
\hbar^{\text{cent}} \psi^{\text{cent}}_{nljq} = e^{\text{cent}}_{nljq} \psi^{\text{cent}}_{nljq}
\]
Baranger definition of effective Single-particle energies

Motivations to refer to \(\{e_{nljq}\} \)

- Pillar of our understanding
- Drives the quest for exotic nuclei

Problem one actually deals with

Many-body Schroedinger equation

\[
H \psi_k^A = E_k^A \psi_k^A
\]

- One-nucleon addition/removal
\[
E_k^\pm \equiv \pm (E_k^{A \pm1} - E_0^A) \quad \text{and} \quad \sigma_k^\pm
\]

- Excitations (e.g. \(k \equiv 2^+ \))
\[
\Delta E_{0 \rightarrow k}^A \equiv E_k^A - E_0^A \quad \text{and} \quad \sigma_{0 \rightarrow k}^A
\]

Spectroscopic factors

\[
S_F^+ = \text{Tr}[S^+], \quad S_F^- = \text{Tr}[S^-]
\]

Sum rule and one-body centroid field

\[
1 = \sum_\mu S_\mu^+ + \sum_\nu S_\nu^- \\
\hbar^\text{cent} = \sum_\mu S_\mu^+ E_\mu^+ + \sum_\nu S_\nu^- E_\nu^- = T + \Sigma(\infty)
\]

ESPEs in \(^{74}\text{Ni} \) from Gorkov-SCGF

\[
E_k^\pm [\text{MeV}] \quad \varepsilon_a^\text{cent} [\text{MeV}]
\]

[\(^{74}\text{Ni} \)]

[\(\text{SF}^\pm \% \)]

[V. Somà, C. Barbieri, T. Duguet, PRC87 (2013) 011303(R)]

ESPE \[\text{[M. Baranger, NPA149 (1970) 225]}\]

\[
\hbar^\text{cent} \psi^\text{cent}_{nljq} = \varepsilon^\text{cent}_{nljq} \psi^\text{cent}_{nljq}
\]

Nuclear shell structure
Outline

1. Appropriate definition
2. Non observability
3. Practical reconstruction

Nuclear shell structure
Observable and non observable

Low-energy nuclear many-body problem

- A-body problem defined within a consistent EFT at a given order in \((Q/\Lambda_{\chi})^\nu\)

 Hamiltonian \(H \equiv \sum_\nu H^{(\nu)} \)

 \(\begin{align*}
 H |\Psi_k^A\rangle &= E_k^A |\Psi_k^A\rangle \\
 \end{align*} \)

Self-adjoint operator \(O \equiv \sum_\nu O^{(\nu)} \)

\(\begin{align*}
 O_k^A &= \langle \Psi_k^A | O |\Psi_k^A\rangle \\
 \end{align*} \)

General unitary transformation \(U(s) \) over Fock space

- \(H(s) \equiv U(s) H U^\dagger(s) \) leads to
 \(\begin{align*}
 H(s) |\Psi_k^A(s)\rangle &= E_k^A |\Psi_k^A(s)\rangle \\
 |\Psi_k^A(s)\rangle &= U(s) |\Psi_k^A\rangle \\
 \end{align*} \)

- Observable \(O(s) \equiv U(s) O U^\dagger(s) \) leads to
 \(\langle \Psi_k^A(s) | O(s) |\Psi_k^A(s)\rangle = O_k^A \)

- Not transforming operator \(O \) defines a non-observable quantity as
 \(\partial_s \langle \Psi_k^A(s) | O |\Psi_k^A(s)\rangle \neq 0 \)

Nuclear shell structure
Low-energy nuclear many-body problem

- A-body problem defined within a consistent EFT at a given order in (Q/Λ)

 Hamiltonian
 \[H \equiv \sum_\nu H^{(\nu)} \]
 \[\Rightarrow \left\{ \begin{array}{l}
 H |\Psi_k^A\rangle = E_k^A |\Psi_k^A\rangle \\
 \end{array} \right. \]

 Self-adjoint operator
 \[O \equiv \sum_\nu O^{(\nu)} \]
 \[\Rightarrow \left\{ \begin{array}{l}
 O_k^A = \langle \Psi_k^A | O | \Psi_k^A \rangle \\
 \end{array} \right. \]

- General unitary transformation $U(s)$ over Fock space

 \[H(s) \equiv U(s) H U^\dagger(s) \] leads to
 \[\begin{array}{l}
 H(s) |\Psi_k^A(s)\rangle = E_k^A |\Psi_k^A(s)\rangle \\
 |\Psi_k^A(s)\rangle \equiv U(s) |\Psi_k^A\rangle \\
 \end{array} \]

- Observable $O(s) \equiv U(s) O U^\dagger(s)$ leads to
 \[\langle \Psi_k^A(s) | O(s) | \Psi_k^A(s) \rangle = O_k^A \]

- Not transforming operator O defines a non-observable quantity as
 \[\partial_s \langle \Psi_k^A(s) | O | \Psi_k^A(s) \rangle \neq 0 \]
Scale dependence of ESPEs

Similarity renormalization group transformation $H(s) \equiv U(s)H U^+(s)$

- **RG flow for operators and states**

 $$\frac{d}{ds} O(s) \equiv [\eta(s), O(s)]$$

 where

 $$\eta(s) \equiv \frac{dU(s)}{ds} U^+(s) = -\eta^+(s)$$

 $$\frac{d}{ds} |\Psi^A_\mu(s)\rangle \equiv \eta(s)|\Psi^A_\mu(s)\rangle$$

- **RG flow for the quantities of interest**

 $$\frac{d}{ds} S^{-pq}_\nu(s) = -\langle \Psi^A_0(s) | [\eta(s), a_p^\dagger] | \Psi^{A-1}_\nu(s) \rangle \langle \Psi^{A-1}_\nu(s) | a_q | \Psi^A_0(s) \rangle$$

 $$-\langle \Psi^A_0(s) | a_p^\dagger | \Psi^{A-1}_\nu(s) \rangle \langle \Psi^{A-1}_\nu(s) | [\eta(s), a_q] | \Psi^A_0(s) \rangle \neq 0$$

 $$\frac{d}{ds} E^{-}_\nu(s) = 0$$

 $$\frac{d}{ds} h^\text{cent}_{pq}(s) = -\langle \Psi^A_0(s) | \{[\eta(s), a_p], H(s) \}, a_q^\dagger \} + \{[a_p, H(s)], [\eta(s), a_q^\dagger] \} | \Psi^A_0(s) \rangle \neq 0$$

- Keeping amplitudes invariant would require to use

 $$U(s)a_p^\dagger U^+(s) = \sum_q u^p_q(s) a_q^\dagger + \sum_{qrs} u^p_{qrs}(s) a_q^\dagger a_r a_s + \ldots$$

 in their definition and would thus kill the original purpose.
Non-observable nature and its consequences

Unitary transformation $H(2) = U^\dagger H(1) U$

Observable
- $E_k^\pm (1) = E_k^\pm (2)$
- $\sigma_k^\pm (1) = \sigma_k^\pm (2)$

Not observable
- $e_a^{\text{cent}}(1) \neq e_a^{\text{cent}}(2)$
- $SF_k^\pm (1) \neq SF_k^\pm (2)$

Partitioning of observable

<table>
<thead>
<tr>
<th>Many-body observable</th>
<th>Single-particle component</th>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{E}_μ^+</td>
<td>$\sum_a s_\mu^{+a} e_a^{\text{cent}}$</td>
<td>$\sum_{pq} s_\mu^{+pq} \Sigma_{qp}^\text{dyn} (E_\mu^+)$</td>
</tr>
</tbody>
</table>

Invariant under U
- Varies under U

Extracting the shell structure from $\{E_k^\pm, \sigma_k^\pm\}$ **is an illusory objective**

- Two practitioners using the same (exact) many-body theory with $H(1)$ and $H(2)$
 - will reproduce the observables $\{E_k^\pm, \sigma_k^\pm\}$ identically (and exactly)
 - will extract two different single-particle shell structures $e_a^{\text{cent}}(1) \neq e_a^{\text{cent}}(2)$
- Still useful to give one interpretation of reality (must agree on "gauge", e.g. $H(1)$)

Invariant under U
- Varies under U

$s_\mu^+ \equiv S_\mu^+ / SF_\mu^+$

$\Sigma_{\mu}^{\text{dyn}}(\omega) \equiv \Sigma(\omega) - \Sigma(\infty)$
Non-observable nature and its consequences

Unitary transformation $H(2) = U^\dagger H(1) U$

<table>
<thead>
<tr>
<th>Observable</th>
<th>Not observable</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ $E_k^{\pm}(1) = E_k^{\pm}(2)$</td>
<td>✗ $e_{a}^{\text{cent}}(1) \neq e_{a}^{\text{cent}}(2)$</td>
</tr>
<tr>
<td>✔ $\sigma_k^{\pm}(1) = \sigma_k^{\pm}(2)$</td>
<td>✗ $SF_k^{\pm}(1) \neq SF_k^{\pm}(2)$</td>
</tr>
</tbody>
</table>

Partitioning of observable

Many-body observable $\left\{ E_{\mu}^+, \sigma_{\mu}^{\pm} \right\}$

\[E_{\mu}^+ = \sum_a s_{\mu}^{+aa} e_{a}^{\text{cent}} + \sum_{pq} s_{\mu}^{+pq} \Sigma_{pq}^{\text{dyn}} (E_{\mu}^+) \]

\(\Sigma_{\text{dyn}}(\omega) \equiv \Sigma(\omega) - \Sigma(\infty) \)

\(s_\mu^+ \equiv S_\mu^+ / SF_\mu^+ \)

Extracting the shell structure from $\{ E_{k}^{\pm}, \sigma_{k}^{\pm} \}$ is an illusory objective

- Two practitioners using the same (exact) many-body theory with $H(1)$ and $H(2)$
 - will reproduce the observables $\{ E_{k}^{\pm}, \sigma_{k}^{\pm} \}$ identically (and exactly)
 - will extract two different single-particle shell structures $e_{a}^{\text{cent}}(1) \neq e_{a}^{\text{cent}}(2)$

- Still useful to give one interpretation of reality (must agree on "gauge", e.g. $H(1)$)
Outline

1. Appropriate definition

2. Non observability

3. Practical reconstruction
Protocol to reconstruct e_{a}^{cent}?

Definition

S_{k}^{\pm} are *intrinsically* theoretical objects

- Only defined when H is specified *together with a fixed "gauge"
- Data only "fix" H up to $U^\dagger U = 1$, i.e. data cannot fix S_{k}^{\pm}

Usual approach

- Hypothesis of pure direct reaction

 $\sigma_{k}^{\pm}\,(\text{exp}) \equiv S_{k}^{\pm pp} \times \sigma_{p}^{\text{s.p.}}\,(\text{th})$

- Only defines *diagonal* part of S_{k}^{\pm}

- $\sigma_{p}^{\text{s.p.}}\,(\text{th})$ not consistent with structure calc.

- Validity of factorization "gauge" dependent

Towards a more appropriate protocol

- Postulate consistent theoretical scheme

 - H with fixed "gauged" used throughout

- Consistent structure/reaction theory

 - Validate theory against $E_{k}^{\pm}\,(\text{exp})/\sigma_{k}^{\pm}\,(\text{exp})$

- Read S_{k}^{\pm} off structure calculation

Two questions of interest once the theoretical scheme is fixed

- What is the error on e_{p}^{cent} due to truncated strength

- What is the (statistical) theoretical uncertainty on e_{p}^{cent} due to incomplete $E_{k}^{\pm}\,(\text{exp})/\sigma_{k}^{\pm}\,(\text{exp})$
Protocol to reconstruct ϵ_a^{cent}?

S_{k}^{\pm} are intrinsically theoretical objects

- Only defined when H is specified *together with a fixed "gauge"*
- Data only "fix" H up to $U^\dagger U = 1$, i.e. data cannot fix S_{k}^{\pm}

Usual approach

- Hypothesis of pure direct reaction

 $$\sigma_{k}^{\pm}(\text{exp}) \equiv S_{k}^{\pm \text{pp}} \times \sigma_{p}^{\text{s,p}}(\text{th})$$

- Only defines *diagonal* part of S_{k}^{\pm}
- $\sigma_{p}^{\text{s,p}}(\text{th})$ not consistent with structure calc.
- Validity of factorization "gauge" dependent

Towards a more appropriate protocol

- Postulate consistent theoretical scheme
 - H with fixed "gauged" used throughout
- Consistent structure/reaction theory
- Validate theory against $E_{k}^{\pm}(\text{exp})/\sigma_{k}^{\pm}(\text{exp})$
- Read S_{k}^{\pm} off structure calculation

Two questions of interest once the theoretical scheme is fixed

- What is the error on ϵ_p^{cent} due to truncated strength
- What is the (statistical) theoretical uncertainty on ϵ_p^{cent} due to incomplete $E_{k}^{\pm}(\text{exp})/\sigma_{k}^{\pm}(\text{exp})$
Protocol to reconstruct e_{d}^{cent}?

S_{k}^{\pm} are intrinsically theoretical objects

- Only defined when H is specified *together with a fixed "gauge"*
- Data only "fix" H up to $U^\dagger U = 1$, i.e. data cannot fix S_{k}^{\pm}

Usual approach

- Hypothesis of pure direct reaction
 \[\sigma_{k}^{\pm}(\text{exp}) \equiv S_{k}^{\pm pp} \times \sigma_{p}^{\text{s.p.}}(\text{th}) \]
- Only defines *diagonal* part of S_{k}^{\pm}
- $\sigma_{p}^{\text{s.p.}}(\text{th})$ not consistent with structure calc.
- Validity of factorization "gauge" dependent

Towards a more appropriate protocol

- Postulate consistent theoretical scheme
 - H with fixed "gauged" used throughout
- Consistent structure/reaction theory
 - Validate theory against $E_{k}^{\pm}(\text{exp})/\sigma_{k}^{\pm}(\text{exp})$
- Read S_{k}^{\pm} off structure calculation

Two questions of interest once the theoretical scheme is fixed

- What is the error on e_{p}^{cent} due to truncated strength
- What is the (statistical) theoretical uncertainty on e_{p}^{cent} due to incomplete $E_{k}^{\pm}(\text{exp})/\sigma_{k}^{\pm}(\text{exp})$
Theoretical experiment based on SM in sd shell

Protocol

1. Perform full sd shell calculation to simulate reference (pseudo-) data
2. Choose subset as "experimentally known" (pseudo-) data
3. Compute χ^2 to "known" (pseudo-) data and propagate statistical uncertainty

[A. Signoracci, T. Duguet, in preparation]

I. Error due to plain truncation of strength

- **Truncate Baranger sum rule in 20,22,24O**

$$ e_{a}^{\text{trunc}} \equiv \frac{\sum_{S_{F_{k}}} S_{k}^{+} \geq S_{\text{trunc}} (S_{k}^{+} + S_{k}^{-})}{\sum_{S_{F_{k}}} S_{k}^{+} \geq S_{\text{trunc}} (S_{k}^{+} + S_{k}^{-})} $$

- Error on Fermi gap up to 20 % (800 keV)
- Error on SO splitting up to 13 % (800 keV)
- Mandatory to include in doubly-magic 24O

Main fragment in secondary channel

Strength down to $\sim 10^{-2}$

Error on $0d_{5/2} - 0d_{3/2}$ SO splitting in 24O

Error (MeV) vs. $\log_{10} [S_{\text{trunc}}]$ graph:

$\delta_{0d_{5/2} - 0d_{3/2}} = 6.26$ MeV

Missing strength in 24O:

- # of states included
- Missing strength (%)
Theoretical experiment based on SM in sd shell

Protocol

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Perform full sd shell calculation to simulate reference (pseudo-) data</td>
</tr>
<tr>
<td>2</td>
<td>Choose subset as "experimentally known" (pseudo-) data</td>
</tr>
<tr>
<td>3</td>
<td>Compute χ^2 to "known" (pseudo-) data and propagate statistical uncertainty</td>
</tr>
</tbody>
</table>

II. Theoretical (statistical) uncertainty

- Full strength provided by (uncertain) theory
- Incomplete data available to validate theory

\[\chi^2 = \sum_{i,j \in \text{known}} (E_i^{\text{th}} - E_i^{\text{exp}}) V_{ij}^{-1} (E_j^{\text{th}} - E_j^{\text{exp}}) \]

- Propagate 1σ uncertainty from $\chi^2_{\text{min}} + 1$
- Assess impact of newly measured data
- Systematic uncertainty comes on top
- Protocol to be applied to real exp.

Uncertainty on Fermi gap in ^{24}O

![Graph showing uncertainty on Fermi gap in ^{24}O]
Conclusions

Take-away messages

1. The shell structure depends on the theoretical scheme, i.e. "gauge", used
 - Link to observables and interpretation change with "gauge"

2. This does not prevent one from linking behaviour of observables to ESPEs
 - As long as the theoretical scheme used is stated and consistent

3. Uncertainties must be evaluated and stated
 - One can anticipate impact of newly measured data
Scale dependence of ESPEs in CC calculations

Non-absoluteness of ESPEs

- Scale dependence of E_ν^- from omitted induced forces and clusters
- Intrinsic scale dependence of $\epsilon_p^{\text{cent}} \approx 6$ MeV for $s \in [2.0, 3.0]$ fm$^{-1}$
 - Not identical for all shells
- Clean demonstration demands unitarily equivalent calculations
 - Requires to track (at least) 3N forces
 - NCSM and CCSD(T) calculations [T. D., K. Hebeler, G. Hagen, D. Furnstahl]

One-neutron removal in 24O

- E^-_ν and ϵ_p^{cent} versus s
- $s \in [2.0; 3.0]$ fm$^{-1}$