Investigation of the $^{238}\text{U}(d, p)$ surrogate reaction via the simultaneous measurement of γ-decay and fission probabilities

1CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium, B.P. 120, 33175 Gradignan, France
2CEA-Cadarache, DEN/DER/SPRC/LEPh, 13108 Saint Paul lez Durance, France
3Department of Physics, University of Oslo, 0316 Oslo, Norway
4IPN d'Orsay, Bâtiment 100, 15 Rue G. Clemenceau, 91406 Orsay Cedex, France
5CEA DAM DIF, 91297 Arpajon, France
6CEA Saclay, DSM/Irfu/SPhN, 91191 Gif-sur-Yvette Cedex, France
7Departamento de FAMN, Universidad de Sevilla, Apartado 1065, 41080 Sevilla, Spain
8iThemba LABS, P.O. Box 722, 7129 Somerset West, South Africa
Need for neutron-induced cross sections of short-lived nuclei: element nucleosynthesis
Neutron-induced fission and capture cross sections of short-lived nuclei needed. Very difficult or even impossible to measure!
Surrogate-reaction method

Cramer and Britt (Los Alamos 1970...!!)

Neutron-induced reaction

\[n + A \rightarrow (A+1)^* \]

Surrogate reaction

Transfer

\[X + Y \]

\[\sigma_{n,\text{decay}}^A (E^*) = \sigma_{CN}^{A+1} (E^*) \cdot P_{\text{surro}}^{\text{decay}} (E^*) \]

Theory

Optical model

Experiment
Validity of the surrogate method

\[\sigma^A_{n,\text{decay}}(E^*) = \sigma^{A+1}_{\text{CN}}(E^*) \cdot P^\text{surro}_\text{decay}(E^*) \]

Neutron-induced and surrogate reaction must lead to the formation of a compound nucleus:
Decay only depends on \(E^*, J \) and \(\pi !! \)

\[P^\text{surro}_\text{decay}(E^*) = P^n_\text{decay}(E^*) \]

Populated \(J \) and \(\pi \) distributions are equal
OR
Decay independent of \(J \) and \(\pi \)
(Only valid at high \(E^* \) in the Weisskopf-Ewing limit)

Not possible to say a priori if a reaction meets these conditions.
Data obtained with the surrogate method need to be compared to neutron-induced data!
Results for fission

$^{3}\text{He} + ^{243}\text{Am}(7370 \text{ y}) \rightarrow ^{4}\text{He} + ^{242}\text{Am} \leftrightarrow n + ^{241}\text{Am}(432.2 \text{ y})$

General finding: the cross sections obtained with surrogate method are in good agreement with n-induced data for fission!

Results for radiative capture

\[3\text{He} + {}_{174}\text{Yb} \rightarrow 4\text{He} + {}_{173}\text{Yb} \]

The cross sections obtained with surrogate method are in clear disagreement with n-induced data for capture!

Why do we obtain such discrepancies?

Strong sensitivity of neutron emission to J^π
Fission seems to be much less sensitive to spin/parity differences, why?

The top of the fission Barrier is also a region of low density of states!

First step to understand:
Simultaneous measurement of fission and gamma-decay probabilities!

Never done before!
The interest of the $^{238}\text{U}(d,p)$ reaction:

No advantage for the target half life but...

- Appears intuitively as the closest reaction to a neutron-induced reaction in inverse kinematics with RIBs

-Good-quality $n+^{238}\text{U}$ data to compare with
Impact of deuteron breakup on the fission probability

$^{238}\text{U}(d,p)$ at 18 MeV and 150°

$^{235}\text{U}(t,p)$ $^{236}\text{U}(d,p)$

$^{233}\text{U}(t,p)$ $^{234}\text{U}(d,p)$

$^{239}\text{Pu}(t,p)$ $^{240}\text{Pu}(d,p)$

Setup for simultaneous measurement of fission and γ-decay probabilities at the Oslo cyclotron

- **27 NaI scintillators for γ detection**
- **15 MeV d Beam**
- **Position sensitive Si Telescopes (126 -140°) for ejectile detection**
- **4 PPACs for fission-fragment detection**

Challenge: removal of gamma rays emitted by the fission fragments!
Determination of decay probabilities

\[P_{\text{decay}}^{\text{surro}}(E^*) = \frac{N_{p-\text{decay}}^{\text{coin}}(E^*)}{N_p^{\text{sing}}(E^*) \cdot \epsilon_{\text{decay}}(E^*)} \]

Subtraction of γ-rays from fission fragments

\[N_{p-\gamma}^{\text{coin}}(E^*) = N_{p-\gamma}^{\text{coin,tot}}(E^*) - \frac{N_{p-f-\gamma}^{\text{coin}}(E^*)}{\epsilon_f(E^*)} \]
• Angular dependence observed
• Gamma-emission probability much higher than the n-induced data
• Fission probability below the n-induced data (up to 35% lower)
Deuteron breakup

Non elastic breakup: DWBA (IAV method)

Elastic breakup

CDCC

Inelastic breakup

Breakup fusion & direct stripping

Imaginary part of the n-238U optical potential was divided into two, one part corresponding to CN formation

\[P_f^{\text{surro}} (E^*) = \frac{N_{p-f}^{\text{coin}} (E^*)}{N_{p}^{\text{sing}} (E^*)} \cdot \epsilon_f (E^*) \]

Jin Lei and Antonio Moro, Univ. of Sevilla, Spain

In \(E^* \leq \text{Sn} + 1.5 \) MeV the breakup fusion represents nearly 80% of the total detected protons
Above $E^*=6.3$ MeV the corrected Pf is still lower than the n-induced data, probably due to fusion of d with 16O followed by proton evaporation.
Focus on the overlap zone...

d + 238U -> p + 239U ↔ n + 238U
Can we explain these results within the framework of the statistical model?

\[
P_{\text{surro,decay}}(E^*) = \sum_{J^\pi} P_{\text{surro}}^{\text{form}}(E^*, J^\pi) \cdot G_{\text{decay}}(E^*, J^\pi)
\]
Interpretation of results

Calculated average spin of 239U

Monte-carlo Hauser Feshbach code

Perspectives: Determine full spin & parity distribution and couple it to the HF results to see if we can reproduce our data
Preliminary results!

\[^{3}\text{He} + ^{238}\text{U} \rightarrow ^{4}\text{He} + ^{237}\text{U} \leftrightarrow n + ^{236}\text{U} \]

The fission probability is much less sensitive to the entrance channel than the gamma-decay probability!

P. Marini et al., to be published
Conclusions...

- First simultaneous measurement of gamma-decay and fission probabilities for the $^{238}\text{U}(d,p)$ surrogate reaction

- The fission probability is lower than the n-induced one. This difference is explained by the contribution from elastic and inelastic deuteron breakup and by fusion-evaporation on oxygen.

- The fission probability corrected for breakup, is in good agreement with the n-induced data whereas the gamma-emission probability is much higher. Also observed for reactions not affected by breakup.

- The fission probability is much less sensitive to the populated angular momentum than the gamma-decay probability

- No obvious explanation yet, our data are useful to establish to which extent the surrogate method can be used to infer fission cross sections in regions where no data are available
Acknowledgements

- ERINDA FP7-EURATOM 269499
- CHANDA FP7-EURATOM 605203