Uniform asymptotic evaluation of the fusion cross-section

Mauricio Porto Pato

and

Mahir Hussein

University of São Paulo

Three-body systems in reactions with rare isotopes

ECT* Trento - 2016
The Wong formula

The fusion cross section is given by,

$$\sigma_F(E) = \frac{\pi}{k^2} \sum_{l=0}^{\infty} (2l + 1)T_l(E)$$

approximating the sum by an integral,

$$\sigma_F(E) \approx \frac{2\pi}{k^2} \int_{1/2}^{\infty} \lambda d\lambda T(\lambda, E)$$

and using the Hill-Wheeler formula

$$T_l^{(HW)} = \frac{1}{1 + \exp \left[\frac{2\pi}{\hbar\omega} \left(E - V_B - \frac{\hbar^2 l(l+1)}{2\mu R^2} \right) \right]}$$

$$\lambda = l + 1/2$$ is a semiclassical angular momentum

$$\sigma = \frac{\hbar\omega}{2E} R_B^2 \ln \left(1 + \exp \left[\frac{2\pi}{\hbar\omega} (E - B) \right] \right)$$
On the Wong cross section and fusion oscillations

N. Rowley1 and K. Hagino2,3

We re-examine the well-known Wong formula for heavy-ion fusion cross sections. Although this celebrated formula yields almost exact results for single-channel calculations for relatively heavy systems such as 16O+144Sm, it tends to overestimate the cross section for light systems such as 12C+12C. We generalise the formula to take account of the energy dependence of the barrier parameters and show that the energy-dependent version gives results practically indistinguishable from a full quantal calculation. We then examine the deviations arising from the discrete nature of the intervening angular momenta, whose effect can lead to an oscillatory contribution to the excitation function. We recall some compact, analytic expressions for these oscillations, and highlight the important physical parameters that give rise to them. Oscillations in symmetric systems are discussed, as are systems where the target and projectile identities can be exchanged via a strong transfer channel.
for the $l = 0$ barrier

\[
\left. \frac{dV}{dr} \right|_{r=R_B} = \left. \frac{dV_N}{dr} \right|_{r=R_B} + \left. \frac{dV_C}{dr} \right|_{r=R_B} = 0
\]

\[
B = V(R_B) = \frac{Z_1 Z_2 e^2}{R_B} \left(1 - \frac{a}{R_B} \right)
\]

\[
R_B = \frac{1}{2} R_C \left(1 + \sqrt{1 - 4 \frac{a}{R_C}} \right)
\]
for the grazing angular momentum

\[\frac{l_g(l_g + 1)\hbar^2}{2mR_E^2} = E - V_E \]

\[\sigma = \frac{\hbar\omega_E}{2E} R_E^2 \ln \left(1 + \exp \left[\frac{2\pi}{\hbar\omega_E}(E - V_E) \right] \right) \]

\[\hbar\omega_E = \hbar \left(-\frac{V''}{m} \right)^{1/2} = \hbar \left(-\frac{V''_C + V''_N + V''_l}{m} \right)^{1/2} \]

evaluated at \(r = R_E \).
the radial Schrödinger equation for the l^{th} partial wave

$$\left[\frac{d^2}{dr^2} + k_l^2(r) \right] u_l(r) = 0$$

where the local wave number $k_l(r)$ given by

$$k_l(r) = \sqrt{\frac{2\mu}{\hbar^2}} \sqrt{(E - V(r) - \frac{\hbar^2 l(l + 1)}{2\mu r^2})} = \sqrt{\left[k^2 - U(r) - \frac{l(l + 1)}{r^2} \right]} \equiv \sqrt{k^2 - U_l(r)}$$

The JWKB solution

$$u_l(r) \approx \frac{A}{\sqrt{k_l(r)}} \exp \left[-i \int_{R_0}^{r} k_l(r') dr' \right]$$
the tunneling probability obtained by Kemble

\[T_l(E) = \frac{1}{1 + e^{2\Phi(JWKB)}} \]

where

\[\Phi(JWKB) = \int_{r_i}^{r_e} dr \kappa_l(r) \]

\[\kappa_l(r) = \sqrt{[U_l(r) - k^2]} \]

\(r_i \) and \(r_e \) are the internal and external turning points.
We use the following parabolic approximation for $V_l(r)$,

$$V_l(r) \approx B_l - \frac{1}{2} \mu \omega_i^2 (r - R_l)^2$$

where $B_l = V_N(R_l) + V_C(R_l) + (\hbar^2 l(l + 1))/(2\mu R_i^2) \approx V_B + (\hbar^2 l(l + 1))/(2\mu R_B^2)$

$$\Phi^{(HW)} = \frac{\pi}{\hbar \omega_i} [E - B_l] \approx \frac{\pi}{\hbar \omega} \left[E - V_B - \frac{\hbar^2 l(l + 1)}{2\mu R^2} \right]$$

Accordingly the Hill-Wheeler expression for the tunneling probability is

$$T_l^{(HW)} = \frac{1}{1 + \exp \left[\frac{2\pi}{\hbar \omega} (E - V_B - \frac{\hbar^2 l(l + 1)}{2\mu R^2}) \right]}$$
\[\sigma_F(E) = \frac{2\pi}{k^2} \int_{1/2}^{\infty} \lambda d\lambda T(\lambda, E) \]

\[\sigma_F = R_B^2 \frac{\hbar \omega}{2E} \ln \left[1 + \exp \left(\frac{2\pi(E - V_B)}{\hbar \omega} \right) \right] \]
THE UNIFORM APPROXIMATION AND THE DINGLE CALCULUS

The fusion cross section is given by,

\[\sigma_F(E) = \frac{\pi}{k^2} \sum_{l=0}^{\infty} (2l + 1) T_l(E) \]

using the Poisson formula,

\[\sum_{n=-\infty}^{\infty} f(n) = \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty} f(y) dy \exp(-2\pi ik y) \]

\[\sigma_F = \sum_{l=0}^{\infty} \sigma_F(l) = \sum_{k=-\infty}^{\infty} (-)^k \int_{0}^{\infty} d\lambda \exp[2i\pi k \lambda] \sigma_F(\lambda) = \sum_{k=-\infty}^{\infty} \sigma_F(k) \]
\[\sigma_F (k = 0) = \frac{2\pi}{k^2} \int_0^\infty \lambda d\lambda T(\lambda) \]

\[\sigma_F (k = \pm 1) = \frac{2\pi}{k^2} \int_0^\infty d\lambda \lambda \exp[\pm 2i\pi \lambda] T(\lambda) \]

\[\sigma_F (k = \pm 2) = \frac{2\pi}{k^2} \int_0^\infty d\lambda \lambda \exp[\pm 4i\pi \lambda] T(\lambda) \]
\[
\sigma_F(k = 0) = \frac{2\pi}{k^2} \int_0^\infty \frac{\lambda d\lambda}{1 + \exp(2 \int_{r_1}^{r_2} d\kappa(\lambda, r))},
\]
where the dependence of \(\kappa(\lambda, r)\) on the angular moment is \(\lambda^2\). Making and integration by parts we obtain

\[
\sigma_F(k = 0) = \frac{\pi}{k^2} \int_0^\infty \frac{\lambda^2 d\lambda \tau(\lambda)}{\cosh^2 \left[\int_{r_1}^{r_2} d\kappa(\lambda, r) \right]},
\]
where

\[
i\lambda \tau(\lambda) = i \int_{r_1}^{r_2} dr \frac{\lambda \partial \kappa(\lambda, r)}{d\lambda} = i\lambda \int_{r_1}^{r_2} \frac{dr}{r^2 \sqrt{U(x, r) - k^2}}
\]
is an imaginary 'angle'.
Uniform Calculation

\[F(\lambda) = 2 \log \left[\cosh \int_{r_1}^{r_2} d \kappa(\lambda, r) \right] - 2 \log(\lambda) = F(\lambda_s) + t^2 \]

where \(\lambda_s \) is a stationary point given by the root of \(F' = 0 \)

that gives the transcendental equation

\[2\tau(\lambda) \tanh \left[\int_{r_1}^{r_2} d \kappa(\lambda, r) \right] - \frac{2}{\lambda} = 0. \]
The integral then becomes

\[\sigma_F(k = 0) = \frac{\exp[-F(\lambda_s)]p^i}{k^2} \int_{-\infty}^{\infty} dt C(t) \exp(-t^2), \]

where \(C(t) = \tau[\lambda(t)] \frac{d\lambda}{dt} \), and the above expression is exact.
\[
\int_{s.p.} e^{-F} G \, du \quad \text{(Stationary-point methods)}
\]

\[
f = (F - F_0)^{1/2} \rightarrow (F_2)^{1/2} u
\]

\[
e^{-F_0} \int_{f = -\infty}^{\infty} e^{-f^2} G \, du
\]

\[
\int e^{-F} G \, du = \left(2\pi/F_2\right)^{1/2} e^{-F_0} \sum_0^\infty Q_{2r}, \quad |\text{ph } F_2| < \pi
\]
\[Q_0 = G_0, \quad Q_1 = -\frac{\sqrt{2}}{3\sqrt{\pi \, F_2^4}} \{ G_0 F_3^2 - 3G_1 F_2 \}, \]

\[Q_2 = \frac{1}{24F_2^3} \{ G_0 (5F_3^2 - 3F_2 F_4) - 12G_1 F_2 F_3 + 12G_2 F_2^2 \}, \]

\[Q_3 = -\frac{\sqrt{2}}{135\sqrt{\pi \, F_2^9/2}} \{ G_0 (40F_3^3 - 45F_2 F_3 F_4 + 9F_2^2 F_5) - 45G_1 F_2 \times (2F_3^2 - F_2 F_4) + 90G_2 F_2^2 F_3 - 45G_3 F_2^3 \}, \]
Asymptotic evaluation of Wong formula

\[
\tanh\left(\frac{x - B}{2}\right) = \frac{1}{x}
\]
Conclusion

In principle, the fusion cross-section can be calculated by using asymptotic uniform approximation to perform the integral in the semi-classical angular momentum. This will show the effective angular momentum that contributes to the fusion.