PROGRESS IN THE THEORY OF NUCLEAR COLLECTIVE EXCITATIONS

Panagiota PAPAKONSTANTINOU
IBS/RISP (Daejeon, S.Korea)

September 2015
Rare Isotope Science Project (RISP)

Aim: to build a heavy-ion accelerator for nuclear physics research
Plus: materials science, biomedical science

approx. ~ 2020

Exotic nuclei, superheavy nuclei

Nuclear Astrophysics
Vibrations and restoration mechanisms

Spring constant

Nuclear incompressibility?

Surface tension

Symmetry energy?

Excitation Energy (MeV)
Nuclear response theory – my progress in...

...Understanding

• New insights and new phenomena: making sense of the electric-dipole spectrum
• Pygmy resonances and the surface dipole mode (or IS-LED)
• Relevant for:
 • nuclear reactions
 • nucleosynthesis
 • equation of state
 • neutron stars

...Methodology

• Linear response theory with microscopic (“realistic”) interactions
• The NNN in-medium force and how to implement it
• Resolving, e.g.:
 • terms that are difficult to constrain (tensor)
 • optimal density dependence?
 • effective mass?
 • controlled extensions
Overview

...Understanding

- About the E1 spectrum
- “Pygmy resonance” =
 - IS-LED
 - + 1ℏω
 - + skin oscillation?
 - + α-cluster mode
- Importance of:
 - shell effects
 - particle emission threshold

Theoretical results from QRPA+D1S model + many many data

...Methodology

- Promising results with SRPA and UCOM... (~2010)
- ...And the importance of NNN terms
- Two strategies
 - simple phenomenological contact term
 - ... and some interesting lessons
 - chiral NNN + SRG **new**
1. NEW(?) DIPOLE MODES IN STABLE AND EXOTIC NUCLEI

“Pygmy resonance” = IS-LED + 1ℏω + skin oscillation? + α-cluster mode

Importance of:
- shell effects
- particle emission threshold
New (?) dipole modes in stable and exotic nuclei

Typical (schematic) dipole spectrum

E1 strength below / around threshold

(below ~ 8-10 MeV)

Related reviews:
- D.Savran, T.Aumann, A.Zilges, Prog.Part.Nucl.Phys. 70, 210 (2013)
An elegant early interpretation: $1\hbar\omega$ transitions

Asymmetries (differences) in proton and neutron particle-hole energies...

... leads to remainders of E1 strength in the $1\hbar\omega$ region, below the GDR – *non collective*

A.Oros et al., PRC57,990(1998)
“Isospin splitting” in stable nuclei

... in N=82 isotones, [D.Savran et al.] as well as:

Crespi et al., PRC91,024323(2015) - LNL
Endres et al., PRL105,212503(2010) - KVI
Crespi et al., PRL113,012501(2014) - LNL
"Isospin splitting" in stable nuclei

- (γ,γ'): Isovector (E1) response
- <1% TRK

- $(\alpha,\alpha'\gamma)$: Isoscalar segment on the lower end
- up to ~10% of EWSR

- IS-Collective – What is it?
“Isospin splitting” in stable nuclei

- \((\gamma,\gamma')\): Isovector (E1) response
 - <1% TRK
- \((\alpha,\alpha'\gamma)\): Isoscalar segment on the lower end
 - up to \(\sim 10\%\) of EWSR

Interpretation I: neutron-skin oscillation (responds to the isoscalar probe)

Objection 1: then IV strength several times too large
Objection 2: Similar IS dipole strength is observed in symmetric nuclei too

Interpretation II: elementary IS surface vibration

[Image « stolen » from Bastrukov et al., PLB664, 258]
48Ca vs. 40Ca

strong isoscalar state in 48Ca with very little E1 strength, just like 40Ca - no neutron-skin mode
Also predicted...

- Sn isotopic chain: up to 132Sn
 - much softer beyond shell closure

- Ni isotopic chain: beyond 62Ni, bimodal structure due to coupling with surface neutrons

- And many other spherical nuclei (208Pb, Mo, ...)

- Both calculated and observed: 16O, 40,48Ca, 208Pb, ...
Energy and structure

Fig. 1. (a) The energy (approximately depicted) of the observed low-energy isoscalar 1^- transitions in 12C [11], 16O [12, 13], 40Ca [2, 14], 48Ca [5], 58Ni, 90Zr [2, 14], 94Mo [4], 124Sn, 138Ba, 140Ce [3], 208Pb [2, 6] in comparison with the energy of the first excited state $30A^{-1/3}$ MeV [2], and the empirical 1$^-$ energy with the Gogny D1S interaction; and with the excitation of the energy-weighted sum rule with $\rho_0 = 0.16$ fm$^{-3}$, $R = 2.634$ fm (r.m.s.) $R_{\text{rms},^{16}\text{O}} \approx 2.7$ fm. The RPA result for 132Sn is also shown, for the coordinate shown on the top axis $r(\text{Sn}) = r(\text{O}) \times R_{\text{rms},^{132}\text{Sn}} / R_{\text{rms},^{16}\text{O}}$ (point-proton r.m.s. radii as calculated with the Gogny D1S interaction).

- Universal feature of “ordinary” nuclei
- No “skin” origin
- A few % of the IS EWSR = very strong!
- “Surface dipole mode”
Collective model

If the isoscalar dipole energy weighted sum rule is exhausted by one state, then the transition density of this state can be expressed as

\[
\rho^{(1)}(r) = -\frac{\beta_1}{R\sqrt{3}} \left[3r^2 \frac{d}{dr} + 10r - \frac{5}{3} r^2 \frac{d}{dr} \right. \\
\left. + \epsilon \left(r \frac{d^2}{dr^2} + 4 \frac{d}{dr} \right) \right] \rho_0(r), \tag{4}
\]

where

\[
\beta_1^2 = \frac{6\pi \hbar^2}{mA E_x} \frac{R^2}{(11 \langle r^4 \rangle - \frac{25}{3} \langle r^2 \rangle^2 - 10\epsilon \langle r^2 \rangle)}, \tag{5}
\]

and \(\beta_1\) is the collective coupling parameter for the isoscalar dipole resonance and \(R\) is the half-density radius of the Fermi mass distribution.
Low-energy vibration vs giant resonance

isoscalar dipole channel

Low-energy IS dipole transition vs compression dipole resonance

Transition density: node
Velocity fields: toroidal vs. compressional

PP, VYuPonomarev, RRoth, JWambach, EPJA47,14(2011)
Low-energy vibration vs giant resonance

Typical RPA result for 2^+ spectrum:
• low-energy vibration
• Giant resonance

Transition density: surface-peaked
Velocity fields: toroidal vs. hydrodynamical

Analogy in the dipole spectrum?

S.Péru et al., EPJA26,25(2005)

PP, PhD thesis (for 56Ni)
Relation to clustering?

- Dipole transitions because of alpha clustering: F.Iachello 1985

M. Spieker et al. PRL114, 192504 (2015) Clustering in Rare Earths (IBM model)

To be continued!
What about the purely IV segment?

consistent with single-particle transitions [QRPA]

...etc (stable Sn, Ni, Ca)

More-recent studies corroborate such an interpretation [Baran et al., Nazarewicz&Reinhard, ...]
An elegant early interpretation: $1\hbar\omega$ transitions

Asymmetries (differences) in proton and neutron particle-hole energies...

... leads to remainders of E1 strength in the $1\hbar\omega$ region, below the GDR – *non collective*

A.Oros et al., PRC57,990(1998)
An elegant early interpretation: $1\hbar\omega$ transitions

Asymmetries (differences) in proton and neutron particle-hole energies... leads to remainders of E1 strength in the $1\hbar\omega$ region, below the GDR – *non collective*

A.Oros et al., PRC57,990(1998)
Two more things:

• Role of shell effects
 • Polarizability and neutron skin
 • Onset of soft modes

• Loosely bound nuclei
 • Exotic effects owing to low emission threshold
 • (Must treat properly the extended wavefunctions)
Polarizability vs skin

Reminder:
The neutron-skin thickness and the dipole polarizability are correlated ... but the correlation is model-dependent (cf Skyrme vs. RMF)

W.Nazarewicz, P.-G.Reinhard, et al ...

\[a_D = \frac{\hbar c}{2\pi^2} \int \frac{\sigma_{abs}}{\omega^2} d\omega \]

Reference value: assuming 100% GDR

\[a_{D_{coll}} = \frac{\hbar c}{2\pi^2} \frac{60NZMeVmb}{AE_{GDR}^2} \]

\[E_{GDR} = (31.2A^{-1/3} + 20.6A^{-1/6}) \text{ MeV} \]

Measurement: D.Rossi et al., PLR 111,242503
Role of shell structure

“Soft” modes beyond...

- N=28 (Ca) [PLB,2014]
- N=82 (Sn) [PRC,2014]

(see also: Inakura et al.)
Proton-rich nuclei and their stable mirrors

Disentangling EoS properties from structure effects?

Summarizing part I:

- Nothing mysterious about the IS segment of the “pygmy dipole strength” in ordinary nuclei:
 - Surface dipole mode is a universal feature
 - α-Clustering may occur too (cf. rare earths)
- E1 strength is consistent with single-particle transitions
- Is there a “neutron-skin” mode? Maybe, ...
 - in very exotic nuclei (beyond certain shell closures) OR
 - very close to the particle threshold
 cf Ni isotopes PP et al., PRC (2015)
 - (Asy-stiff functionals predict it in stable nuclei)

- Need measurements on either side of shell closure, and of the emission threshold, around 9-10MeV
- Challenging work

Awaiting new, complete spectra!
2. NUCLEAR RESPONSE WITH REALISTIC INTERACTIONS

Promising results with SRPA and UCOM... (~2010)
...and the importance of NNN
First applications with chiral + SRG
Related papers...

- Roth, Hergert, PP, Neff, Feldmeier, PRC72,034002(2005) *Matrix elements and few-body calculations*
- Roth, PP, Paar, Hergert, Neff, Felmeier, PRC73,044312(2006) *Hartree-Fock and perturbation theory*
- Paar, PP, Roth, PRC74,014318(2006) *RPA*
- PP, Roth, Paar, PRC75,014310(2007) *RPA with explicit ground-state correlations*
- PP, Roth, PLB671,356 (2009) *Second RPA*
- PP, Roth, PRC81,024317(2010) *Second RPA*
- H. Hergert, PP, R. Roth, PRC83,064317 *QRPA (with SRG)*
- Usman, ..., PP, ... PLB698(2011)191 *Second RPA and the GQR of 40Ca in (p,p')*
- A. Günther, PP, R. Roth, JPG41,115107(2014) *RPA (with SRG)*
- R. Trippel, PP, R. Roth, in preparation *SRPA with $\chi(\text{NN+NNN}), \text{SRG}$*
In a nutshell

- Start from a realistic, microscopic NN(+NNN) potential
 - Precise fits (Argonne, Bonn)
 - Chiral
- Soften it by a unitary transformation
 - UCOM: state-independent SRC
 - SRG: ~diagonal Hamiltonian in momentum space
- Choose a suitable many-body method
 - Linear response theory -> RPA
- Examine convergence w.r.t. model space
 - -> SecondRPA

The fine print:

- Truncations at the 2N level (nowadays 3N)
- There is ~one adjustable parameter, chosen to minimize residual 3N effects (exact calculations of energies in few-body systems)
Unitary correlation operator method

• Explicit correlations by means of unitary operators imprinted in the wavefunction or the operators

\[|\tilde{\Psi}\rangle = C_\Omega C_r |\Psi\rangle = U |\Psi\rangle \quad \Rightarrow \quad \langle \tilde{\Psi} | A |\tilde{\Psi}\rangle = \langle \Psi | \tilde{A} |\Psi\rangle \]

• A : e.g. Hamiltonian \(\Rightarrow \) \(H_{\text{eff}} \)
• U determined variationally

In practice: truncate at 2N nucleon level and adjust range of tensor correlator using exact calculations

\(\Rightarrow \) One parameter takes care of genuine and induced 3N

Only state-independent short-range correlations!
Long-range ones to be taken care of by the model space
Similarity renormalization group

• Flow equations

\[\frac{d\tilde{A}_\alpha}{d\alpha} = [\eta_\alpha, \tilde{A}_\alpha] \]

• Towards diagonal Hamiltonian in momentum space: KE as generator

\[\eta_\alpha = (2\mu)^2 [T_{\text{int}}, \tilde{H}_\alpha] \]

• Also unitary transformation

\[\tilde{A}_\alpha = U_\alpha^\dagger A U_\alpha \]

In practice: adjust flow parameter, e.g. using exact calculations; possibly 3N force for saturation

one ~ two parameters

... in both cases: In first applications, truncation at 2N level; ~1 parameter, chosen to eliminate the effect of 3N forces... from the **masses** of few-body systems

(UCOM: tensor correlator range; SRG: flow parameter)
AV18-UCOM-Hartree-Fock + perturbative corrections

\[E^{(2)} = -\frac{1}{4} \sum_{i,j} \sum_{a,b} \frac{|\langle ij | H_{\text{int}} | ab \rangle|^2}{e_a + e_b - e_i - e_j} \]

\[H_{\text{int}} = T_{\text{rel}} + V_{\text{UCOM}} \]

3N force

Roth, PP, Paar, Hergert, Neff, Felmeier, PRC73, 044312 (2006)
The first "self-consistent", large-scale HF-SRPA calculations:

- Full space
- No divergencies
- No double counting
- Computing and algebraic techniques
SRPA and UCOM

3N force?
Exploring two strategies:

1. A phenomenological NNN contact term (equivalent to a density-dependent NN term)
 - Results with (Q)RPA + SRG-evolved AV18
 - See how far we can go with it
 - Rich NN interaction, giving bound nuclei – NNN a rather weak correction

2. (S)RPA with normal-ordered realistic NNN \(\rightarrow \) work with two-body formalism
1) Phenomenological 3N contact term

A. Günther, PP, R. Roth, JPG41, 115107(2014)
QRPA applications: H. Hergert, PP, R. Roth, PRC83, 064317

Requirement: correct radii GRs:
Mostly within 20% from other results
Bound nuclei at the 2N level
DDI: up to an order of magnitude smaller than « usual »

\[V_{3N} = C_{3N} \delta^{(3)}(\bar{r}_1 - \bar{r}_2)\delta^{(3)}(\bar{r}_1 - \bar{r}_3) \]
Strength of in-medium 3N force?

- **Phenomenological** functionals: a density-dependent term is required for saturation.
- Without it, the ground state collapses to large density.
- In the **present approaches**, most nuclei “saturate” already at the 2N level; the 3N only improves the saturation point.

- **3N force an order of magnitude weaker than a typical density-dependent interaction**, e.g.:

 \[
 t_3 \text{(UCOM-SRG)} \times \rho_0 \div t_3 \times \rho_0^\alpha \text{(D1S)} \sim 0.08
 \]

- A handle on the “acceptable” strength of a (in-medium) DDI vs. momentum dependence etc.?

H. Hergert, PP, R. Roth, PRC83, 064317; A. Günther, PP, R. Roth, JPG41, 115107(2014);
2) SRG-evolved chiral interactions+NO
Normal-ordered 3N force:

- Rewrite the 3N interaction in normal-ordered form:

\[
\hat{V}_{3N} = \frac{1}{36} \sum_{ijk,i'j'k'} v_{ijk,i'j'k'}^{3N} \hat{a}_i^\dagger \hat{a}_j^\dagger \hat{a}_k^\dagger \hat{a}_{i'} \hat{a}_{j'} \hat{a}_{k'} = N[\hat{a}_i^\dagger \hat{a}_j^\dagger \hat{a}_k^\dagger \hat{a}_{i'} \hat{a}_{j'} \hat{a}_{k'}] \\
+ \sum_{1 \text{ contr.}} N[\hat{a}_i^\dagger \hat{a}_j^\dagger \hat{a}_k \hat{a}_{i'} \hat{a}_{j'} \hat{a}_{k'}] \\
+ \sum_{2 \text{ contr.}} N[\hat{a}_i^\dagger \hat{a}_j^\dagger \hat{a}_k \hat{a}_{i'} \hat{a}_{j'} \hat{a}_{k'}] \\
+ \sum_{3 \text{ contr.}} N[\hat{a}_i^\dagger \hat{a}_j^\dagger \hat{a}_k \hat{a}_{i'} \hat{a}_{j'} \hat{a}_{k'}]
\]

- HF with full interaction
- Normal ordering, neglect last term
- (S)RPA without it \(\Rightarrow\) 2N formalism \(\Rightarrow\) numerical simplification

R.Roth et al., PRL109,052501

R.Trippel, PP, R.Roth, in preparation
NNN and normal-ordering in (S)RPA

NN (N3LO) + NNN (N2LO)
SRG evolution: up to induced NNN terms
Normal ordering: Work with a NN formalism
Weak residual 3N force

☑ First application of chiral NN+NNN to giant resonances
☑ Remaining: convergence issues

Compare with UCOM:
• similar shift; stronger fragmentation??
Summary of Part II

• Nuclear response with microscopic NN + NNN interactions: It’s possible, especially with normal ordering
• Because the “in-medium” NNN is relatively small

• SRPA with NN+NNN: promising first results
 • To be tackled: restore the stability condition, violated in SRPA [P.P., PRC90,024305]; via GSC or subtraction procedure

• Towards a predictive theory of nuclear response

• Insight and guidance for improvements of phenomenological effective interactions
Overview

...Understanding

- About the E1 spectrum
- “Pygmy resonance” = IS-LED
- $+ 1\hbar \omega$
- + skin oscillation?
- + α-cluster mode

Importance of:

...Methodology

- Promising results with SRPA and UCOM... (~2010)
- And the importance of NNN terms
- Two strategies
 - simple phenomenological contact term
 - ... and some interesting lessons
- chiral NNN + SRG **new**

Thank you!
감사합니다!
Several RPA variants

- RPA in configuration space
 - Most basic: Choose a Hamiltonian and a basis (H.O.), solve Hartree-Fock, build RPA matrix using the same Hamiltonian
- QRPA in configuration space
 - Similar: Begin with Hartree-Fock-Bogolyubov
 - Same Hamiltonian in all channels

 These take care of Landau damping
- RPA in coordinate space:
 - Convergence guaranteed
 - With proper boundary conditions, you can get the escape width
- Second RPA:
 - Includes 2p2h configurations -> collisional damping
- Renormalized RPA, ... PVC, ...
Ground-state vs. excited state properties

\[\frac{E}{A}(\rho, \delta^2) = \left(\frac{E}{A} \right)_{\rho=\rho_0} + \frac{(\rho - \rho_0)^2}{18} \left(\frac{\partial^2 (E/A)}{\partial \rho^2} \right)_{\rho=\rho_0} + \frac{\delta^2}{2} \left(\frac{\partial^2 (E/A)}{\partial \delta^2} \right)_{\delta=0} \]

Absolute values vs. derivatives
Role of shell structure

“Soft” modes beyond...

- N=28 (Ca) [PLB, 2014]
- N=82 (Sn) [PRC, 2014]

(see also: Inakura et al.)
Electric dipole spectrum of 208Pb

1. Tamii et al., PRL107(2011)062502
2. Crespi et al., PRL 113(2014)012501
3. Poelhakken et al., PLB278(1992)423
4. Poelhakken et al., PLB278(1992)423
3. Ryezayeva et al., PRL89 (2002) 272502
4. GDR (here: Tamii et al.)