Isovector observables in nuclear mean-field theories

P.–G. Reinhard

Institut für Theoretische Physik II
Universität Erlangen-Nürnberg

9. July 2013
Acknowledgements

Collaborators:
J. Erler, W. Nazarewicz, M. Stoitsov(†) UT Knoxville
J. Piekarewicz FSU Tallahassee
T. Niksic, N. Paar, D. Vretenar Zagreb
B. Agrawal Saha Institute Kolkatta
G. Colo, X. Roca-Maza Milano
W. Satula Warsaw
M. Kortelainen Jyväskyla
J. A. Maruhn, B. Schütrumpf Frankfurt
W. Kleinig, V. Nesterenko JINR Dubna
I. Kvasil, P. Vesely Prague

Support: BMBF contracts 06ER9063, 06FY9086, 06DD9052D, GSI F&E
1. Parameters and observables

2. Optimization of model parameters and subsequent variation

3. The influence of $J = a_{\text{sym}}$ on observables

4. The weak-charge formfactor and correlation with r_n

5. A few words about low-lying dipole strength ("pygmy region")
Exploring correlations: SHF/RMF are adjusted to data by χ^2 fits. We exploit methods of error propagation in χ^2 technique.

Observables: We concentrate on static isovector observables \leftrightarrow symmetry energy $a_{\text{sym}} \equiv J_T$.

Trends with J_T: SHF and RMF-PC have similar trends, but can differ in offset \leftrightarrow relativistic effect? RMF-DD has even different trends \leftrightarrow much different density dependence?

Correlation with J_T: Group of highly coorrelated (static) isovector observables: polarizability α_D, neutron radius r_n, skin $r_n - r_p$, weak-charge formfactor $F_W(q_{\text{PREX}})$.

Weak-charge formfactor F_W: χ^2 uncertainties depend on q_{PREX}, maximal at q_{PREX} \leftrightarrow PREX data most informative.

Low E_d dipole strenth: Dominated by isoscalar $L = 1$ modes, spread over several distinct modes.

Integrated dipole strength yields combined information on a_{sym} and κ.

Conclusions

- **Exploring correlations:**
 SHF/RMF are adjusted to data by χ^2 fits. We exploit methods of error propagation in χ^2 technique.
Conclusions

- **Exploring correlations:**
 SHF/RMF are adjusted to data by χ^2 fits.
 We exploit methods of error propagation in χ^2 technique.

- **Observables:**
 We concentrate on static isovector observables \longleftrightarrow symmetry energy $a_{\text{sym}} \equiv J$

 - Trends with J:
 - SHF and RMF-PC have similar trends, but can differ in offset \leftrightarrow relativistic effect?
 - RMF-DD has even different trends \leftrightarrow much different density dependence?

 - Correlation with J:
 - Group of highly correlated (static) isovector observables \longleftrightarrow polarizability α, neutron radius r_n, skin $r_n - r_p$, weak-charge formfactor $F_W(q_{\text{PREX}})$

 - Weak-charge formfactor F_W:
 - χ^2 uncertainties depend on q, maximal at q_{PREX} \leftrightarrow PREX data most informative

 - Low E_dipole strength:
 - Dominated by isoscalar $L = 1$ modes, spread over several distinct modes.
 - Integrated dipole strength yields combined information on a_{sym} and κ.
Conclusions

- **Exploring correlations:**
 SHF/RMF are adjusted to data by χ^2 fits.
 We exploit methods of error propagation in χ^2 technique.

- **Observables:**
 We concentrate on static isovector observables \leftrightarrow symmetry energy $a_{\text{sym}} \equiv J$

- **Trends with J:**
 SHF and RMF-PC have similar trends, but can differ in offset \leftrightarrow relativistic effect?
 RMF-DD has even different trends \leftrightarrow much different density dependence?
Conclusions

- **Exploring correlations:**
 SHF/RMF are adjusted to data by χ^2 fits.
 We exploit methods of error propagation in χ^2 technique.

- **Observables:**
 We concentrate on static isovector observables \leftrightarrow symmetry energy $a_{\text{sym}} \equiv J$

- **Trends with J:**
 SHF and RMF-PC have similar trends, but can differ in offset \leftrightarrow relativistic effect?
 RMF-DD has even different trends \leftrightarrow much different density dependence?

- **Correlation with J:**
 Group of highly coorrelated (static) isovector observables:
 polarizability α_D, neutron radius r_n, skin $r_n - r_p$, weak-charge formfactor $F_W(q_{\text{PREX}})$
Conclusions

- **Exploring correlations:**
 SHF/RMF are adjusted to data by χ^2 fits.
 We exploit methods of error propagation in χ^2 technique.

- **Observables:**
 We concentrate on static isovector observables \leftrightarrow symmetry energy $a_{\text{sym}} \equiv J$

- **Trends with J:**
 SHF and RMF-PC have similar trends, but can differ in offset \leftrightarrow relativistic effect?
 RMF-DD has even different trends \leftrightarrow much different density dependence?

- **Correlation with J:**
 Group of highly coorrelated (static) isovector observables:
 polarizability α_D, neutron radius r_n, skin $r_n - r_p$, weak-charge formfactor $F_W(q_{\text{PREX}})$

- **Weak-charge formfactor F_W:**
 χ^2 uncertainties depend on q, maximal at $q_{\text{PREX}} \leftrightarrow$ PREX data most informative
Conclusions

- **Exploring correlations:**
 SHF/RMF are adjusted to data by χ^2 fits.
 We exploit methods of error propagation in χ^2 technique.

- **Observables:**
 We concentrate on static isovector observables \leftrightarrow symmetry energy $a_{\text{sym}} \equiv J$

- **Trends with J:**
 SHF and RMF-PC have similar trends, but can differ in offset \leftrightarrow relativistic effect?
 RMF-DD has even different trends \leftrightarrow much different density dependence?

- **Correlation with J:**
 Group of highly correlated (static) isovector observables:
 polarizability α_D, neutron radius r_n, skin $r_n - r_p$, weak-charge formfactor $F_W(q_{\text{PREX}})$

- **Weak-charge formfactor F_W:**
 χ^2 uncertainties depend on q, maximal at q_{PREX} \leftrightarrow PREX data most informative

- **Low E dipole strength:**
 Dominated by isoscalar $L = 1$ modes, spread over several distinct modes.
 Integrated dipole strength yields combined information on a_{sym} and κ.

Parameters and observables
The nuclear matter parameters (NMP)

given \(E/A(\rho) = \) energy per particle in symmetric nuclear matter (function of density \(\rho \))
this allows to define basic properties near equilibrium:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E/A_{eq})</td>
<td>binding energy per particle at equilibrium point</td>
</tr>
<tr>
<td>(\rho_0)</td>
<td>equilibrium density</td>
</tr>
<tr>
<td>(K = 9\rho_0^2 \frac{\partial^2 E}{\partial \rho^2} \frac{A}{E})</td>
<td>incompressibility (isoscalar static response)</td>
</tr>
<tr>
<td>(\frac{m^*}{m})</td>
<td>effective mass (isoscalar dynamic response)</td>
</tr>
<tr>
<td>(J = a_{sym})</td>
<td>symmetry energy (isovector static response)</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>TRK sum rule enhancement (\leftrightarrow) isovector (\frac{m_{1}^*}{m}) (dynamic response)</td>
</tr>
<tr>
<td>(L = 3\rho_0 \frac{\partial \rho}{\partial \rho} J)</td>
<td>slope of symmetry energy</td>
</tr>
</tbody>
</table>
The nuclear matter parameters (NMP)

given \(E/A(\rho) = \) energy per particle in symmetric nuclear matter (function of density \(\rho \))
this allows to define basic properties near equilibrium:

- \(E/A_{\text{eq}} \): binding energy per particle at equilibrium point
- \(\rho_0 \): equilibrium density
- \(K = 9\rho_0^2 \partial^2 \frac{E}{A} \): incompressibility (isoscalar static response)
- \(\frac{m^*}{m} \): effective mass (isoscalar dynamic response)
- \(J = a_{\text{sym}} \): symmetry energy (isovector static response)
- \(\kappa \): TRK sum rule enhancement \(\leftrightarrow \) isovector \(\frac{m^*_1}{m} \) (dynamic response)
- \(L = 3\rho_0 \partial \rho J \): slope of symmetry energy

considered here as part of the model parameters
(e.g.: equivalent to \(t_0, x_0, t_1, x_1, t_3, x_3, \alpha \) in case of SHF)
Observables in the pool of fit data

<table>
<thead>
<tr>
<th>Observable</th>
<th>Description</th>
<th>Number of Nuclei</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_B</td>
<td>binding energy</td>
<td>70</td>
</tr>
<tr>
<td>r_C</td>
<td>charge r.m.s. radii</td>
<td>50</td>
</tr>
<tr>
<td>$R_{\text{diff},C}$</td>
<td>charge diffraction radii (first zero of charge formfactor)</td>
<td>27</td>
</tr>
<tr>
<td>σ_C</td>
<td>charge surface thickness (first max. of charge formfactor)</td>
<td>26</td>
</tr>
<tr>
<td>Δ_p</td>
<td>proton pairing gaps (third difference of E_B)</td>
<td>21</td>
</tr>
<tr>
<td>Δ_n</td>
<td>neutron pairing gaps (third difference of E_B)</td>
<td>16</td>
</tr>
<tr>
<td>$\delta \varepsilon_{ls}$</td>
<td>selected spin-orbit splittings (only for SHF)</td>
<td>7 data points</td>
</tr>
</tbody>
</table>
Observables in the pool of fit data

<table>
<thead>
<tr>
<th>Observable</th>
<th>Description</th>
<th>Data Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_B</td>
<td>binding energy</td>
<td>70 nuclei</td>
</tr>
<tr>
<td>r_C</td>
<td>charge r.m.s. radii</td>
<td>50 nuclei</td>
</tr>
<tr>
<td>$R_{\text{differ,}C}$</td>
<td>charge diffraction radii (first zero of charge formfactor)</td>
<td>27 nuclei</td>
</tr>
<tr>
<td>σ_C</td>
<td>charge surface thickness (first max. of charge formfactor)</td>
<td>26 nuclei</td>
</tr>
<tr>
<td>Δ_p</td>
<td>proton pairing gaps (third difference of E_B)</td>
<td>21 nuclei</td>
</tr>
<tr>
<td>Δ_n</td>
<td>neutron pairing gaps (third difference of E_B)</td>
<td>16 nuclei</td>
</tr>
<tr>
<td>$\delta\varepsilon_{ls}$</td>
<td>selected spin-orbit splittings (only for SHF)</td>
<td>7 data points</td>
</tr>
</tbody>
</table>

Data have been scrutinized to have negligible effects from ground state correlation.
“Predicted” observables in correlation study

- neutron r.m.s. radius \(r_n \) in \(^{208}\text{Pb} \)
- neutron skin \(r_n - r_p \) in \(^{208}\text{Pb} \)
- weak-charge formfactor \(F_W(q_{\text{PREX}} = 0.475/\text{fm}) \) in \(^{208}\text{Pb} \) (related to PREX)
 \[
 F_W(q) = G_n^Z(q)F_n(q) + G_p^Z(q)F_p(q)
 \]
 \(G_{p/n}^Z = \text{weak-charge formfactor for nucleon} \)
 \(F_{p/n} = \text{formfactor of nuclear distributions (Fourier transform of } \rho(r) \text{)} \)
- dipole polarizability \(\alpha_D = \int_0^\infty dE \sigma_{\text{photoabs}}(E) E^{-2} \) in \(^{208}\text{Pb} \)
- binding energy \(E_B \) for extremely exotic nuclei (super heavy, very neutron rich)
- \(Q_\alpha \) value for super-heavy element
- \(B_f = \text{fission barrier in } ^{266}\text{Hs} \)
- surface energy \(a_{\text{surf}} \) (computed from semi-infinite matter)
- low-lying dipole strength (from photo-absorption cross section \(\sigma_{\text{photoabs}}(E) \))
Optimization of model parameters and subsequent variation
Optimization of model parameters and exploring its variation

model: SHF/RMF
Optimization of model parameters and exploring its variation

parameters: \(\mathbf{p} = (p_1 \ldots p_F) \)

model: SHF/RMF
Optimization of model parameters and exploring its variation

parameters: $\mathbf{p} = (p_1 \ldots p_F)$

model: SHF/RMF

observables: $A = \langle \hat{A} \rangle = A(\mathbf{p})$
Optimization of model parameters and exploring its variation

parameters: \(p = (p_1 \ldots p_F) \)
partly NMP:
\(K, \frac{m^*}{m}, J, \kappa, L \)

model: SHF/RMF

observables: \(A = \langle \hat{A} \rangle = A(p) \)
Optimization of model parameters and exploring its variation

\[\mathbf{p} = (p_1 \ldots p_F) \]

partly NMP:
\[K, \frac{m^*}{m}, J, \kappa, L \]

model: \text{SHF/RMF}

fit observables:
\[A_{\text{fit}} = A_{\text{fit}}(\mathbf{p}) \]

predicted observables:
\[A_{\text{pred}} = A_{\text{pred}}(\mathbf{p}) \]

\[\chi^2(\mathbf{p}) = \text{least squares error} \]

feedback to minimize \[\chi^2(\mathbf{p}) \]

error on data:
\[\Delta A_{\text{exp}} \]

uncertainties:
\[\Delta \mathbf{p}, \Delta K, \Delta m^*/m, \Delta J, \Delta \kappa, \Delta L \]

particularly large are
\[\Delta J, \Delta \kappa, \Delta L \quad (= \text{isovector NMP}) \]

\[\Rightarrow \text{study effect of variation } \Delta J \text{P} . \]
Optimization of model parameters and exploring its variation

parameters: $p = (p_1 \ldots p_F)$
partly NMP: $K, \frac{m^*}{m}, J, \kappa, L$

model: SHF/RMF

exp. fit data: A_{exp}

fit observables: $A_{\text{fit}} = A_{\text{fit}}(p)$

predicted observables: $A_{\text{pred}} = A_{\text{pred}}(p)$
Optimization of model parameters and exploring its variation

\[
\chi^2(p) = \text{least squares error}
\]

Parameters:
\[p = (p_1 \ldots p_F) \]
Partly NMP:
\[K, \frac{m^*}{m}, J, \kappa, L \]

Model: SHF/RMF

Predicted observables:
\[A_{\text{pred}} = A_{\text{pred}}(p) \]

Fit observables:
\[A_{\text{fit}} = A_{\text{fit}}(p) \]

Experimental fit data:
\[A_{\text{exp}} \]

Fit observables:
\[A_{\text{fit}} = A_{\text{fit}}(p) \]

Experimental fit data:
\[A_{\text{exp}} \]

\[\chi^2(p) = \text{least squares error} \]

Feedback to minimize \(\chi^2(p) \)

Error on data:
\[\Delta A_{\text{exp}} \]

Uncertainties:
\[\Delta p, \Delta K, \Delta m^*/m, \Delta J, \Delta \kappa, \Delta L \]

Uncertainties:
\[\Delta A_{\text{pred}} \]

Particularly large are \(\Delta J, \Delta \kappa, \Delta L \) (=isovector NMP)

\[\Rightarrow \text{study effect of variation} \]

\[P \cdot G \text{ Reinhard (Inst.Theor.Physik, Erlangen)} \]

Isovector observables in nuclear mean-field theories

9. July 2013
Optimization of model parameters and exploring its variation

\[\chi^2(p) = \text{least squares error} \]

Feedback to minimize

\[\chi^2(p) \]

Parameters:
\[p = (p_1 \ldots p_F) \]

Partly NMP:
\[K, \frac{m^*}{m}, J, \kappa, L \]

Model:
\[\text{SHF/RMF} \]

Exp. fit data:
\[A_{\text{exp}} \]

Fit observables:
\[A_{\text{fit}} = A_{\text{fit}}(p) \]

Predicted observables:
\[A_{\text{pred}} = A_{\text{pred}}(p) \]

Fit observables:
\[A_{\text{fit}} = A_{\text{fit}}(p) \]

Exp. fit data:
\[A_{\text{exp}} \]

\[\chi^2(p) = \text{least squares error} \]
Optimization of model parameters and exploring its variation

\[\chi^2(p) = \text{least squares error} \]

feedback to minimize \(\chi^2(p) \)

parameters:
\[p = (p_1 \ldots p_F) \]
partly NMP:
\[K, \frac{m^*}{m}, J, \kappa, L \]

uncertainties: \(\Delta p \)
\[\Delta K, \Delta \frac{m^*}{m}, \Delta J, \Delta \kappa, \Delta L \]

model:
SHF/RMF

exp. fit data: \(A_{\text{exp}} \)
error on data: \(\Delta A_{\text{exp}} \)

fit observables:
\[A_{\text{fit}} = A_{\text{fit}}(p) \]

predicted observables:
\[A_{\text{pred}} = A_{\text{pred}}(p) \]

uncertainties: \(\Delta A_{\text{pred}} \)
Optimization of model parameters and exploring its variation

\[\chi^2(p) = \text{least squares error} \]

feedback to minimize \(\chi^2(p) \)

\[p = (p_1 \ldots p_F) \]

partly NMP:
\[K, \frac{m^*}{m}, J, \kappa, L \]

parameters:

uncertainties: \(\Delta p \)
\[\Delta K, \Delta \frac{m^*}{m}, \Delta J, \Delta \kappa, \Delta L \]

particularly large are
\[\Delta J, \Delta \kappa, \Delta L (=\text{isovector NMP}) \]

model:

\[\text{SHF/RMF} \]

fit observables:

\[A_{\text{fit}} = A_{\text{fit}}(p) \]

exp. fit data:

\[A_{\text{exp}} \]

error on data:

\[\Delta A_{\text{exp}} \]

predicted observables:

\[A_{\text{pred}} = A_{\text{pred}}(p) \]

uncertainties:

\[\Delta A_{\text{pred}} \]
Optimization of model parameters and exploring its variation

\[\chi^2(p) = \text{least squares error} \]

feedback to minimize \(\chi^2(p) \)

parameters:
\(p = (p_1 \ldots p_F) \)
partly NMP:
\(K, \frac{m^*}{m}, J, \kappa, L \)

uncertainties:
\(\Delta p \)
\(\Delta K, \Delta \frac{m^*}{m}, \Delta J, \Delta \kappa, \Delta L \)

model:
SHF/RMF

predicted observables:
\(A_{\text{pred}} = A_{\text{pred}}(p) \)

fit observables:
\(A_{\text{fit}} = A_{\text{fit}}(p) \)

exp. fit data:
\(A_{\exp} \)

error on data:
\(\Delta A_{\exp} \)

uncertainties:
\(\Delta A_{\text{pred}} \)

particularly large are
\(\Delta J, \Delta \kappa, \Delta L \) (=isovector NMP)

\[\Rightarrow \text{study effect of variation} \Delta J \]
Trend analysis: dedicated variation of J

- **Model:** SHF/RMF

- **Parameters:**
 - $\mathbf{p} = (p_1 \ldots p_F)$
 - Partly NMP: $K, \frac{m^*}{m}, J, \kappa, L$

- **Fit Observables:**
 - $A_{\text{fit}} = A_{\text{fit}}(\mathbf{p})$

- **Predicted Observables:**
 - $A_{\text{pred}} = A_{\text{pred}}(\mathbf{p})$

- **Exp. Fit Data:** A_{exp}

- **Chi-Squared:** $\chi^2(\mathbf{p}) = \text{least squares error}$

- **Feedback:**
 - To minimize $\chi^2(\mathbf{p})$

- **Fix J during fit \implies produce parameter set $\mathbf{p}(J)$ for a series of J
Trend analysis: dedicated variation of J

- **Parameters**: $p = (p_1 \ldots p_F)$
 - partly NMP: $K, \frac{m^*}{m}, J, \kappa, L$

- **Model**: SHF/RMF

- **Fit Observables**: $A_{\text{fit}} = A_{\text{fit}}(p)$

- **Predicted Observables**: $A_{\text{pred}} = A_{\text{pred}}(p; J)$

- **Experimental Fit Data**: A_{exp}

- **Feedback to Minimize**: $\chi^2(p)$

- **Fix J during fit**: produce parameter set $p(J)$ for a series of J

- **Trends** $A = A(J)$ reveal dependences
Correlation analysis: propagate $\Delta \mathbf{p}$ to mixed variances $\Delta^2(A_1, A_2)$

Parameters:

$\mathbf{p} = (p_1 \ldots p_F)$

Partly NMP:

$K, \frac{m^*}{m}, J, \kappa, L$

Uncertainties:

$\Delta \mathbf{p}, \Delta K, \Delta \frac{m^*}{m}, \Delta J, \Delta \kappa, \Delta L$

Model:

SHF/RMF

Explicit fit data: A_{exp}

Error on data: ΔA_{exp}

Fit observables:

$A_{\text{fit}} = A_{\text{fit}}(\mathbf{p})$

Predicted observables:

$A_{\text{pred}} = A_{\text{pred}}(\mathbf{p})$

$\Delta^2 A_{\text{pred}} = \sum_{ij} \partial p_i A C_{ij}^{-1} \partial p_j A$

Feedback to minimize $\chi^2(\mathbf{p})$

Key quantity:

Covariance matrix $C_{ij}^{-1} = \partial p_i \partial p_j \chi^2$

E.g. $\Delta p_i = \sqrt{C_{ii}}$

Reasonable range of \mathbf{p}:

$\chi^2(\mathbf{p}) = \chi^2_{\text{min}} + 1$
Correlation analysis: propagate Δp to mixed variances $\Delta^2(A_1, A_2)$

- **Model**: SHF/RMF
- **Parameters**: $p = (p_1 \ldots p_F)$, partly NMP: $K, \frac{m^*}{m}, J, \kappa, L$

Fit observables: $A_{\text{fit}} = A_{\text{fit}}(p)$

Predicted observables: $A_{\text{pred}} = A_{\text{pred}}(p)$

Mixed variance: $\Delta^2(AB) = \sum_{ij} \partial_{p_i} A C_{ij}^{-1} \partial_{p_j} B$

Covariance: $c_{AB} = \frac{\Delta^2(AB)}{\sqrt{\Delta^2(AA) \Delta^2(BB)}}$

- $c_{AB} = 1 \leftrightarrow$ highly correlated
- $c_{AB} = 0 \leftrightarrow$ uncorrelated

Key quantity: Covariance matrix $C_{ij}^{-1} = \partial_{p_i} \partial_{p_j} \chi^2$

- $\Delta p_i = \sqrt{C_{ii}}$
The influence of $J = a_{\text{sym}}$ on observables
Trends of nuclear matter properties (NMP) with a_{sym} for the case of SHF

K, m^*/m, κ independent of $J (= a_{\text{sym}}) \implies$ four independent model parameters

$L =$ slope of J strongly linked with $J \iff$ hidden correlation in data (and model)
Trends of nuclear matter properties (NMP) with a_{sym} – SHF and RMF

for all cases: K, m^*/m, κ independent of a_{sym}, and L strongly linked with J

large differences SHF \leftrightarrow RMF: mass parameters m^*/m and κ
Correlations of a_{sym} with NMP, for the case of SHF

Again: K, m^*/m, κ perfectly independent; but strong correlation with L, $\partial_e E_{\text{neut}}/N$ surface properties a_{surf}, $a_{\text{surf, sym}}$ show a mixed picture
Good isovector observables (in 208Pb): weak-charge formfactor F_W, neutron skin $r_n - r_p$, polarizability α_D, superheavy elements uncorrelated, neutron rich nuclei & fission somewhat correlated.
Correlations of a_{sym} with NMP and obs. in finite nuclei – SHF & RMF

<table>
<thead>
<tr>
<th>Variable</th>
<th>Correlation with a_{sym}</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>[Graph showing correlation]</td>
</tr>
<tr>
<td>m^*/m</td>
<td>[Graph showing correlation]</td>
</tr>
<tr>
<td>L</td>
<td>[Graph showing correlation]</td>
</tr>
<tr>
<td>κ</td>
<td>[Graph showing correlation]</td>
</tr>
<tr>
<td>$d\rho E/N_{\text{neut}}$</td>
<td>[Graph showing correlation]</td>
</tr>
<tr>
<td>a_{surf}</td>
<td>[Graph showing correlation]</td>
</tr>
<tr>
<td>$a_{\text{surf, sym}}$</td>
<td>[Graph showing correlation]</td>
</tr>
</tbody>
</table>

RMF models show nearly the same correlations as SHF except for surface properties and fission.

Trends of isovector observables in 208Pb with a_{sym}

for each model: clear trends with a_{sym}

SHF \leftrightarrow RMF-PC: same slope, different offset

RMF-DD: even different slope \leftrightarrow different ρ-dependence

(but small variance of a_{sym})
Trends of observables in ^{208}Pb against each other

Isovector observables in ^{208}Pb line up nicely with each other. Inter-correlation seems better than correlation with a_{sym}.

The weak-charge formfactor and correlation with r_n
Weak-charge formfactor with uncertainty, for ^{208}Pb with SV-min

$$F_W(q) = G_n^Z(q)F_n(q) + G_p^Z(q)F_p(q)$$

$G_{p/n}^Z = \text{weak-charge FF nucleon}$

$F_{p/n} = \text{FF of } \rho_{p/n}(r)$
Weak-charge formfactor with uncertainty, for ^{208}Pb with SV-min

$$F_W(q) = G_Z^n(q)F_n(q) + G_Z^p(q)F_p(q)$$

$G_Z^{p/n} = \text{weak-charge FF nucleon}$

$F_{p/n} = \text{FF of } \rho_{p/n}(r)$

-dominated by neutron formfactor F_n

\leftrightarrow measure neutron radius r_n
Weak-charge formfactor with uncertainty, for ^{208}Pb with SV-min

$$F_W(q) = G^Z_n(q)F_n(q) + G^Z_p(q)F_p(q)$$

$G^Z_{p/n}$ = weak-charge FF nucleon

$F_{p/n} = $ FF of $\rho_{p/n}(r)$

dominated by neutron formfactor F_n

\leftrightarrow measure neutron radius r_n

extrapolation uncertainties depend on q

large at PREX point $q_{\text{PREX}} = 0.475$/fm

\implies PREX provides new information
Weak-charge formfactor and its correlation with neutron radius r_n

Extrapolation uncertainties depend on q large at PREX point $q_{\text{PREX}} = 0.475/\text{fm}$

\Rightarrow PREX provides new information

F_W highly correlated with r_n at low q

Lack of correlation near first zero of F_W

SHF and RMF very similar
A few words about low-lying dipole strength ("pygmy region")
“Pygmy strength” = low lying peaks in isovector dipole spectrum

pygmy "resonance" = bunches of dipole strength safely below GDR region

various interpretations:
1) 1ph structures
2) collective motion of neutron surface versus bulk

(SHF surveys favor option 1)

choose a cut off at \(E_{\text{cut}} = 9.5 \text{ MeV} \) to define

\[
\text{"pygmy strength"} = \int_{0}^{E_{\text{cut}}} \sigma_{\text{photoabs}}(E)/E \, dE
\]
Transition formfactor $f_{\text{trans}}(q, E)$ for $L = 1$ modes in ^{208}Pb

$^{208}\text{Pb, SV-bas, L=1 modes}$

- **$T=0$ transition formfactor /4**
- **$T=1$ transition formfactor *2**

Strong $T = 0$ modes, $q \approx 0.6$

$(q = 0$ occupied by c.m. mode)
Transition formfactor $f_{\text{trans}}(q, E)$ for $L = 1$ modes in ^{208}Pb

^{208}Pb, SV-bas, $L=1$ modes

0 transition formfactor /4

1 transition formfactor *2

strong $T = 0$ modes, $q \approx 0.6$

$q = 0$ occupied by c.m. mode

low E dip.str.

GDR

Transition formfactor $f_{\text{trans}}(q, E)$ for $L = 1$ modes in ^{208}Pb

^{208}Pb, SV-bas, $L=1$ modes

- T=0 transition formfactor /4
- T=1 transition formfactor *2

related to strong $T = 0$ mode ← low E dip.str.

strong $T = 0$ modes, $q \approx 0.6$
$q = 0$ occupied by c.m. mode

GDR
Transition formfactor $f_{\text{trans}}(q, E)$ for $L = 1$ modes in ^{208}Pb

^{208}Pb, SV-bas, $L=1$ modes

$T=0$ transition formfactor /4

$T=1$ transition formfactor *2

related to strong $T = 0$ mode ← low E dip.str.

strong $T = 0$ modes, $q \approx 0.6$

$q = 0$ occupied by c.m. mode

pure $L=1$, $q \approx 0.6$

GDR

Transition formfactor $f_{\text{trans}}(q, E)$ for $L = 1$ modes in ^{208}Pb

^{208}Pb, SV-bas, L=1 modes

T=0 transition formfactor /4

T=1 transition formfactor *2

related to strong $T = 0$ mode \leftarrow low E dip.str.

pure $L=1$, $q \approx 0.6$

low E dipoles: mixed modes, predominantly isoscalar, nonetheless useful info on NMP

strong $T = 0$ modes, $q \approx 0.6$

$q = 0$ occupied by c.m. mode
Trends of low-lying dipole strength with nuclear matter parameters

\[
\int_{E_{\text{cut}}}^E dE \frac{\sigma(E)}{E}
\]

Pygmy strength \(^{208}\text{Pb}\) [arb.u.]

- Effective mass \(m^*/m\)
- TRK sum rule \(\kappa\)
- Incompressibility \(K\) [MeV]
- Symmetry energy [MeV]

Some dependence on each NMP \(\Rightarrow\) mixed info on NMP

Trends of low-lying dipole strength with nuclear matter parameters

\[\int_0^{E_{\text{cut}}} dE \frac{\sigma(E)}{E} \]

Pygmy str.: some dependence on each NMP

\[\Rightarrow \]
mixed info on NMP

Correlation of $\int_0^E dE' \sigma(E') E'^n$ with nuclear matter parameters

correlation: integrated dip. strength with NMP, ^{208}Pb, SV-min

with T=1 dipole, E^{-1} weighted

E^{-1} weight favors a_{sym} for $E \to \infty$

E^1 weight favors κ for $E \to \infty$
Correlation of \(\int_0^E dE' \sigma(E') E''^n \) with nuclear matter parameters

Correlation: integrated dipole strength with NMP, \(^{208}\text{Pb}, \text{SV-min} \)

with \(T=1 \) dipole, \(E^{-1} \) weighted

with \(T=1 \) dipole, \(E^+1 \) weighted

\[E^{-1} \text{ weight favors } a_{\text{sym}} \text{ for } E \to \infty \]

\[E^+1 \text{ weight favors } \kappa \text{ for } E \to \infty \]

GDR region favors \(\kappa \) for all \(E \) weights

\[K \quad m^*/m \quad a_{\text{sym}} \quad \kappa_{\text{TRK}} \]
Correlation of $\int_0^E dE' \sigma(E') E''^n$ with nuclear matter parameters

correlation: integrated dipole strength with NMP, 208Pb, SV-min

- with $T=1$ dipole, E^{-1} weighted
- with $T=1$ dipole, E^{+1} weighted

E^{-1} weight favors a_{sym} for $E \to \infty$

E^{1} weight favors κ for $E \to \infty$

GDR region favors κ for all E weights

Pygmy region yields mixed info about a_{sym} and κ \Rightarrow useful data in combined analysis

(open problem: robust choice of cutoff energy E_{cut})
Conclusions

Exploring correlations: SHF/RMF are adjusted to data by χ^2 fits. We exploit methods of error propagation in χ^2 technique.

Observables: We concentrate on static isovector observables \rightarrow symmetry energy $\alpha_{sym} \equiv J_T$.

Trends with J_T: SHF and RMF-PC have similar trends, but can differ in offset \leftrightarrow relativistic effect? RMF-DD has even different trends \leftrightarrow much different density dependence?

Correlation with J_T: Group of highly coorrelated (static) isovector observables: polarizability α_D, neutron radius r_n, skin $r_n - r_p$, weak-charge formfactor $F_W(q_{PREX})$.

Weak-charge formfactor F_W: χ^2 uncertainties depend on q, maximal at $q_{PREX} \leftrightarrow$ PREX data most informative.

Low E_d dipole strenth: Dominated by isoscalar $L=1$ modes, spread over several distinct modes. Integrated dipole strength yields combined information on α_{sym} and κ.
Conclusions

- **Exploring correlations:**
 SHF/RMF are adjusted to data by χ^2 fits. We exploit methods of error propagation in χ^2 technique.
Conclusions

- **Exploring correlations:**
 SHF/RMF are adjusted to data by χ^2 fits.
 We exploit methods of error propagation in χ^2 technique.

- **Observables:**
 We concentrate on static isovector observables \leftrightarrow symmetry energy $a_{\text{sym}} \equiv J$
Conclusions

- **Exploring correlations:**
 SHF/RMF are adjusted to data by χ^2 fits.
 We exploit methods of error propagation in χ^2 technique.

- **Observables:**
 We concentrate on static isovector observables \leftrightarrow symmetry energy $a_{\text{sym}} \equiv J$

- **Trends with J:**
 SHF and RMF-PC have similar trends, but can differ in offset \leftrightarrow relativistic effect?
 RMF-DD has even different trends \leftrightarrow much different density dependence?
Conclusions

- **Exploring correlations:**
 SHF/RMF are adjusted to data by χ^2 fits.
 We exploit methods of error propagation in χ^2 technique.

- **Observables:**
 We concentrate on static isovector observables \leftrightarrow symmetry energy $a_{\text{sym}} \equiv J$

- **Trends with J:**
 SHF and RMF-PC have similar trends, but can differ in offset \leftrightarrow relativistic effect?
 RMF-DD has even different trends \leftrightarrow much different density dependence?

- **Correlation with J:**
 Group of highly coorrelated (static) isovector observables:
 polarizability α_D, neutron radius r_n, skin $r_n - r_p$, weak-charge formfactor $F_W(q_{\text{PREX}})$
Conclusions

- **Exploring correlations:**
 SHF/RMF are adjusted to data by χ^2 fits.
 We exploit methods of error propagation in χ^2 technique.

- **Observables:**
 We concentrate on static isovector observables \leftrightarrow symmetry energy $a_{\text{sym}} \equiv J$

- **Trends with J:**
 SHF and RMF-PC have similar trends, but can differ in offset \leftrightarrow relativistic effect?
 RMF-DD has even different trends \leftrightarrow much different density dependence?

- **Correlation with J:**
 Group of highly coorrelated (static) isovector observables:
 polarizability α_D, neutron radius r_n, skin $r_n - r_p$, weak-charge formfactor $F_W(q_{\text{PREX}})$

- **Weak-charge formfactor F_W:**
 χ^2 uncertainties depend on q, maximal at q_{PREX} \leftrightarrow PREX data most informative
Conclusions

- **Exploring correlations:**
 SHF/RMF are adjusted to data by χ^2 fits.
 We exploit methods of error propagation in χ^2 technique.

- **Observables:**
 We concentrate on static isovector observables \leftrightarrow symmetry energy $a_{\text{sym}} \equiv J$

- **Trends with J:**
 SHF and RMF-PC have similar trends, but can differ in offset \leftrightarrow relativistic effect?
 RMF-DD has even different trends \leftrightarrow much different density dependence?

- **Correlation with J:**
 Group of highly coorrelated (static) isovector observables:
 polarizability α_D, neutron radius r_n, skin $r_n - r_p$, weak-charge formfactor $F_W(q_{\text{PREX}})$

- **Weak-charge formfactor F_W:**
 χ^2 uncertainties depend on q, maximal at $q_{\text{PREX}} \leftrightarrow$ PREX data most informative

- **Low E dipole strength:**
 Dominated by isoscalar $L = 1$ modes, spread over several distinct modes.
 Integrated dipole strength yields combined information on a_{sym} and κ.