Effects of QCD critical point on electromagnetic probes

Akihiko Monnai (IPhT, CNRS/CEA Saclay)
with Swagato Mukherjee (BNL), Yi Yin (MIT) +
Björn Schenke (BNL) + Jean-Yves Ollitrault (IPhT)

Phase diagram of strongly interacting matter:
From Lattice QCD to Heavy-Ion Collision Experiments
December 1, 2017, ECT*, Italy
Probing the QCD equation of state at finite density
(including effects of QCD critical point on electromagnetic probes)

Akihiko Monnai (IPhT, CNRS/CEA Saclay)
with Swagato Mukherjee (BNL), Yi Yin (MIT) +
Björn Schenke (BNL) + Jean-Yves Ollitrault (IPhT)

Phase diagram of strongly interacting matter:
From Lattice QCD to Heavy-Ion Collision Experiments
December 1, 2017, ECT*, Italy
Introduction

- The QCD phase diagram is not well known at finite μ_B
Introduction

- The QCD phase diagram is not well known at finite μ_B
Introduction

- The QCD phase diagram is not well known at finite μ_B
Introduction

- The QCD phase diagram is not well known at finite μ_B

- Determine the properties of QCD matter at finite T, μ_B
- Verify the existence of a QCD critical point (QCP)
Introduction

- Beam energy scan: an experimental exploration of QCD phases

- Performed and planned at
 - RHIC (BNL)
 - Phase I (2009-11): 7.7-62.4 GeV
 - Phase II (2017-20?): 3.0 GeV?
 - HADES, FAIR (GSI)
 - NICA (JINR)
 - SPS (CERN)
 - J-PARC-HI (J-PARC)
 - etc.
Method

- Possible approaches

<table>
<thead>
<tr>
<th></th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice QCD</td>
<td>First principle</td>
<td>Sign problem at finite density</td>
</tr>
<tr>
<td>Model calculations</td>
<td>Works at finite density (restricted)</td>
<td>Model dependent</td>
</tr>
<tr>
<td>(pNJL, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extraction from</td>
<td>Actual data</td>
<td>Needs a reliable model for exps</td>
</tr>
<tr>
<td>experimental data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Method

Possible approaches

<table>
<thead>
<tr>
<th></th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice QCD</td>
<td>First principle</td>
<td>Sign problem at finite density</td>
</tr>
<tr>
<td>Model calculations</td>
<td>Works at finite density (restricted)</td>
<td>Model dependent</td>
</tr>
<tr>
<td>(pNJL, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extraction from</td>
<td>Actual data</td>
<td>Needs a reliable model for exps</td>
</tr>
<tr>
<td>experimental data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Akihiko Monnai (IPhT), Probing the QCD equation of state at finite density
Viscous hydrodynamic model

- for connecting the EoS and observables

Hydrodynamic equations are closed with the EoS that characterize thermodynamics of the system.
At vanishing density ($\mu_B=0$)

Equation of state (EoS)

- At vanishing densities

We have good lattice calculations of the QCD EoS

Is it what we see in heavy-ions collisions?
Equation of state (EoS)

- We systematically generate variations of EoS:

![Graphs showing variations of EoS with different colors representing different EOSs: EOS A, EOS B, EOS L, EOS C for the first graph and EOS D, EOS E, EOS L, EOS F for the second graph. The graphs display the relationship between pressure over temperature squared (P/T^4) and temperature (T) in GeV.]

- Low temperature side (T < 140 GeV) is constrained by hadron resonance gas for the Cooper-Frye freeze-out.
Mean m_T and dN/dy

- Observables sensitive to the EoS

 - Entropy density $\leftrightarrow (1/R_0^3)dN/dy$

 $s(T_{\text{eff}}) = a \frac{1}{R_0^3} \frac{dN}{dy}$

 “Number/entropy per volume”

 - Energy density over entropy density \leftrightarrow mean m_T

 $\frac{\epsilon(T_{\text{eff}})}{s(T_{\text{eff}})} = b\langle m_T \rangle$

 “Energy per number/entropy”

T_{eff}: effective temperature of the medium

R_0: effective radius of the medium where $R_0^2 \equiv 2 \left(\langle |x(\tau_0)|^2 \rangle - |\langle x(\tau_0) \rangle|^2 \right)$

a, b: constant factor
Hydrodynamic results

- (2+1)D ideal hydro, Au-Au, 0-5%, Glauber initial conditions

There is a good correspondence between the EoS and observables; a single set of (a,b) fits hydro results onto the EoS
Hadronic decay and viscosity

- $<m_T>$ vs. $(1/R_0^3)dN/dy$ plot for EoS L

- (a,b) can be determined so that all the EoS are satisfied
Hadronic decay and viscosity

- $<m_T>$ vs. $(1/R_0^3)dN/dy$ plot for EoS L

- (a,b) can be determined so that all the EoS are satisfied
- Hadronic decay reduces $<m_T>$ and increases dN/dy
Hadronic decay and viscosity

- $<m_T>$ vs. $(1/R_0^3)dN/dy$ plot for EoS L

- (a,b) can be determined so that all the EoS are satisfied
- Hadronic decay reduces $<m_T>$ and increases dN/dy
- Shear and bulk viscous effects cancel on $<m_T>$, increase dN/dy
Comparisons to experimental data

- Viscous hydro results w/ decays

- Compatible with the lattice QCD equation of state within errors
Comparisons to experimental data

- Viscous hydro results w/ decays

- Compatible with the lattice QCD equation of state within errors
- Larger effective # of degrees of freedom allowed by the data
At finite density ($\mu_B \neq 0$)

AM, S. Mukherjee and Y. Yin, in preparation
Equation of state ($\mu_B \neq 0$)

- Lattice QCD EoS: Taylor expansion

\[
\frac{P_{\text{lat}}}{T^4} = \frac{P_0}{T^4} + \frac{1}{2} \chi^{(2)}_B \left(\frac{\mu_B}{T} \right)^2 + \frac{1}{4!} \chi^{(4)}_B \left(\frac{\mu_B}{T} \right)^4 + \mathcal{O} \left(\frac{\mu_B}{T} \right)^6
\]
Equation of state ($\mu_B \neq 0$)

- Lattice QCD EoS: Taylor expansion

$$\frac{P_{\text{lat}}}{T^4} = \frac{P_0}{T^4} + \frac{1}{2} \chi_B^{(2)} \left(\frac{\mu_B}{T} \right)^2 + \frac{1}{4!} \chi_B^{(4)} \left(\frac{\mu_B}{T} \right)^4 + \mathcal{O} \left(\frac{\mu_B}{T} \right)^6$$

- Match to hadron resonance gas EoS at low T
Equation of state ($\mu_B \neq 0$)

- Lattice QCD EoS: Taylor expansion

\[
\frac{p_{\text{lat}}}{T^4} = \frac{p_0}{T^4} + \frac{1}{2} \chi_B^{(2)} \left(\frac{\mu_B}{T} \right)^2 + \frac{1}{4!} \chi_B^{(4)} \left(\frac{\mu_B}{T} \right)^4 + O \left(\frac{\mu_B}{T} \right)^6
\]

- Match to hadron resonance gas EoS at low T

 ▶ Taylor expansion is not reliable when μ_B/T is large
Equation of state ($\mu_B \neq 0$)

- Lattice QCD EoS: Taylor expansion

\[\frac{P_{\text{lat}}}{T^4} = \frac{P_0}{T^4} + \frac{1}{2} \chi_B^{(2)} \left(\frac{\mu_B}{T} \right)^2 + \frac{1}{4!} \chi_B^{(4)} \left(\frac{\mu_B}{T} \right)^4 + O \left(\frac{\mu_B}{T} \right)^6 \]

- Match to hadron resonance gas EoS at low T

 - Taylor expansion is not reliable when μ_B/T is large

 - The **EoS of kinetic theory** must match the **EoS of hydrodynamics** at freeze-out for energy-momentum/net baryon conservation

\[E_i \frac{dN_i}{d^3 p} = \frac{g_i}{(2\pi)^3} \int_{\Sigma} p_i^\mu d\sigma_{\mu,i} f_i \]
Equation of state ($\mu_B \neq 0$)

- Lattice QCD EoS: Taylor expansion

$$\frac{P_{\text{lat}}}{T^4} = \frac{P_0}{T^4} + \frac{1}{2} \chi_B^{(2)} \left(\frac{\mu_B}{T} \right)^2 + \frac{1}{4!} \chi_B^{(4)} \left(\frac{\mu_B}{T} \right)^4 + \mathcal{O} \left(\frac{\mu_B}{T} \right)^6$$

- Match to hadron resonance gas EoS at low T

 - Taylor expansion is not reliable when μ_B/T is large

 - The EoS of kinetic theory must match the EoS of hydrodynamics at freeze-out for energy-momentum/net baryon conservation
Equation of state ($\mu_B \neq 0$)

- We connect the equations of state as

\[
\frac{P}{T^4} = \frac{1}{2} \left[1 - \tanh \frac{T - T_c(\mu_B)}{\Delta T_c} \right] \frac{P_{\text{HRS}}(T, \mu_B)}{T^4} + \frac{1}{2} \left[1 + \tanh \frac{T - T_c(\mu_B)}{\Delta T_c} \right] \frac{P_{\text{lat}}(T_s, \mu_B)}{T_s^4}
\]
Equation of state ($\mu_B \neq 0$)

- We connect the equations of state as

$$
\frac{P}{T^4} = \frac{1}{2} \left[1 - \tanh \frac{T - T_c(\mu_B)}{\Delta T_c} \right] \frac{P_{\text{HRS}}(T, \mu_B)}{T^4} + \frac{1}{2} \left[1 + \tanh \frac{T - T_c(\mu_B)}{\Delta T_c} \right] \frac{P_{\text{lat}}(T_s, \mu_B)}{T_s^4}
$$

- Conditions of monotonous increase of thermodynamic variables

$$
\frac{\partial^2 P}{\partial T^2} = \frac{\partial s}{\partial T} > 0, \quad \frac{\partial^2 P}{\partial T \partial \mu_B} = \frac{\partial s}{\partial \mu_B} = \frac{\partial n_B}{\partial T} > 0, \quad \frac{\partial^2 P}{\partial \mu_B^2} = \frac{\partial n_B}{\partial \mu_B} > 0
$$
Equation of state ($\mu_B \neq 0$)

- We connect the equations of state as

$$\frac{P}{T^4} = \frac{1}{2} \left[1 - \tanh \frac{T - T_c(\mu_B)}{\Delta T_c} \right] \frac{P_{\text{HRS}}(T, \mu_B)}{T^4} + \frac{1}{2} \left[1 + \tanh \frac{T - T_c(\mu_B)}{\Delta T_c} \right] \frac{P_{\text{lat}}(T_s, \mu_B)}{T_s^4}$$

- It is not a priori clear if this is satisfied because

$$\frac{\partial^2 P}{\partial T^2} = \frac{\partial s}{\partial T} > 0, \quad \frac{\partial^2 P}{\partial T \partial \mu_B} = \frac{\partial s}{\partial \mu_B} = \frac{\partial n_B}{\partial T} > 0, \quad \frac{\partial^2 P}{\partial \mu_B^2} = \frac{\partial n_B}{\partial \mu_B} > 0$$

- Conditions of monotonous increase of thermodynamic variables

$$\frac{\partial^2}{\partial T^2} \left[1 \pm \tanh \left(\frac{T - T_c}{\Delta T_c} \right) \right] = -2\Delta T_c^{-2} \tanh \left(\frac{T - T_c}{\Delta T_c} \right) \cosh^{-2} \left(\frac{T - T_c}{\Delta T_c} \right)$$

is negative above T_c
Equation of state \((\mu_B \neq 0)\)

- The result

\[
\frac{P}{T^4} = \frac{1}{2} \left[1 - \tanh \frac{T - T_c(\mu_B)}{\Delta T_c} \right] \frac{P_{\text{HRS}}(T)}{T^4} \\
+ \frac{1}{2} \left[1 + \tanh \frac{T - T_c(\mu_B)}{\Delta T_c} \right] \frac{P_{\text{lat}}(T_s)}{T_s^4}
\]

where

\[
T_c = 0.166 - 0.4 \times (0.139\mu_B^2 + 0.053\mu_B^4) \\
T_s = T + 0.4 \times [T_c(0) - T_c(\mu_B)]
\]

⚠️ Hydro model needs \(T_c > 0.16\) GeV for switching to UrQMD; Lattice agreement is at \(T_c < 0.14\) GeV
Equation of state \((\mu_B \neq 0)\)

- The result

\[
\frac{P}{T^4} = \frac{1}{2} \left[1 - \tanh \frac{T - T_c(\mu_B)}{\Delta T_c} \right] \frac{P_{\text{HRS}}(T)}{T^4} \\
+ \frac{1}{2} \left[1 + \tanh \frac{T - T_c(\mu_B)}{\Delta T_c} \right] \frac{P_{\text{lat}}(T_s)}{T_s^4}
\]

where

\[
T_c = 0.166 - 0.4 \times (0.139 \mu_B^2 + 0.053 \mu_B^4) \\
T_s = T + 0.4 \times [T_c(0) - T_c(\mu_B)]
\]

⚠️ Hydro model needs \(T_c > 0.16 \text{ GeV}\) for switching to UrQMD;
Lattice agreement is at \(T_c < 0.14 \text{ GeV}\)

We can also introduce a test “critical point”
Equation of state ($\mu_B \neq 0$)

The result

$$\frac{P}{T^4} = \frac{1}{2} \left[1 - \tanh \frac{T - T_c(\mu_B)}{\Delta T_c} \right] \frac{P_{\text{HRS}}(T)}{T^4} + \frac{1}{2} \left[1 + \tanh \frac{T - T_c(\mu_B)}{\Delta T_c} \right] \frac{P_{\text{lat}}(T)}{T^4}$$

where

$$T_c = 0.166 - 0.4 \times (0.139\mu_B^2 + 0.053\mu_B^4)$$

$$T_s = T + 0.4 \times [T_c(0) - T_c(\mu_B)]$$

⚠️ Hydro model needs $T_c > 0.16$ GeV for switching to UrQMD;
Lattice agreement is at $T_c < 0.14$ GeV

We can also introduce a test “critical point”
QCD critical point (QCP)

- A landmark in the QCD-land (which may or may not exist)
QCD critical point (QCP)

- What observables are sensitive to a QCP?
 - Proposed so far:
 - Event-by-event fluctuation of multiplicities
 - Rapidity slope of directed flow v_1
 - etc.

We consider the effects of viscosity evolution on the QCP by looking at dileptons
Electromagnetic probes

For probing the critical point

- The QCP can leave imprint via critical behavior of viscosity in two ways:
 1. Modification of bulk evolution
 2. δf correction in the emission rate

The QGP is EM transparent

Photons and dileptons know the history of the time evolution

Graphics by AM
Near the critical point

- Bulk viscosity becomes dominant

- Shear viscosity: \(\eta = \xi^{(4-d)/19} \)

- Bulk viscosity: \(\zeta = \xi^3 \)

- Baryon diffusion: \(D_B = \xi^{-1} \)

We focus on bulk viscosity in this study
Near the critical point

- Bulk viscosity becomes dominant

 - Shear viscosity: \(\eta = \frac{\xi^{(4-d)}}{19} \)

 - Bulk viscosity: \(\zeta = \xi^3 \)

 - Baryon diffusion: \(D_B = \frac{1}{\xi} \)

 We focus on bulk viscosity in this study

- Parameterization for bulk viscosity

 \[\zeta = \zeta_0 \left(\frac{\xi_{eq}}{\xi_0} \right)^3 \]

 where \(\zeta_0 = 2 \left(\frac{1}{3} - c_s^2 \right) \frac{e + P}{4\pi T} \)

 A. Buchel, PLB 663, 276 (2008)

 \(\xi \) is parameterized based on Ising model
Near the critical point

- Bulk viscosity becomes dominant

- Relaxation time

\[\tau_{\Pi} = \tau_{\Pi,0} \left(\frac{\xi_{eq}}{\xi_0} \right)^3 \]

is motivated by

\[\lim_{k \to \infty} \frac{d\omega}{dk} = \sqrt{c_s^2 + \frac{\zeta}{\tau_{\Pi}(\epsilon + P)}} < 1 \]

- Causal hydro is applicable when \(\Pi \) is “frozen” at large \(\tau_{\Pi} \)

- The relaxation time from an AdS/CFT approach

\[\tau_{\Pi,0} = C_{\Pi} \frac{18 - (9 \ln 3 - \sqrt{3}\pi)}{24\pi T} \quad (C_{\Pi} = 1) \]

is free of cavitation \((P + \Pi > 0)\)
Dileptons

- How is the emission rate affected

- δf correction in the emission rate

\[
\frac{dN}{d^4x} = \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} f_1(E_1) f_2(E_2) \sigma(M) v_{rel}
\]

\[
= \frac{dN_0}{d^4x} + \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} [f_1^0(E_1) \delta f_2(E_2) + (1 \leftrightarrow 2)] \sigma(M) v_{rel}
\]

QGP $q^+q^- \rightarrow l^+l^-$

Hadron $\pi^+\pi^- \rightarrow l^+l^-$
Dileptons

- How is the emission rate affected

- δf correction in the emission rate

$$\frac{dN}{d^4x} = \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} f_1(E_1) f_2(E_2) \sigma(M) v_{\text{rel}}$$

$$= \frac{dN_0}{d^4x} + \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} \left[f_1^0(E_1) \delta f_2(E_2) + (1 \leftrightarrow 2) \right] \sigma(M) v_{\text{rel}}$$

(1) Equilibrium emission rate

K. Kajantie, J. Kapusta, L. McLerran, A. Mekjian, PRD 34, 2746
Dileptons

- How is the emission rate affected

- δf correction in the emission rate

\[
\frac{dN}{d^4x} = \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} f_1(E_1) f_2(E_2)\sigma(M)v_{\text{rel}}
\]

\[
= \frac{dN_0}{d^4x} + \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} [f_1^0(E_1)\delta f_2(E_2) + (1 \leftrightarrow 2)]\sigma(M)v_{\text{rel}}
\]

(1) Equilibrium emission rate

\[
\frac{dN_0}{d^4xdM^2d^2p_Tdy} = \frac{\sigma(M)}{2(2\pi)^5} \frac{M^2}{2} e^{-E/T} \left(1 - \frac{4m_a^2}{M^2} \right)
\]

(2) Off-eq. emission rate needs δf_i

K. Kajantie, J. Kapusta, L. McLerran, A. Mekjian, PRD 34, 2746
Dileptons

- Bulk viscous corrections

- Grad moment method (Israel-Stewart) in Boltzmann approx.

\[
\delta f^i = - f_0^i \left[b_i D_\Pi E_i + B_\Pi (m_a^2 - E_i^2) + \tilde{B}_\Pi E_i^2 \right] \Pi
\]

The off-equilibrium rate is

\[
\frac{d\delta N}{d^4xdM^2d^2p_Tdy} = -\frac{\sigma(M)}{2(2\pi)^5} M e^{-E/T} \left(1 - \frac{4m_a^2}{M^2} \right) \\
\times 2\Pi \left[B_\Pi m_a^2 \frac{M}{2} + (\tilde{B}_\Pi - B_\Pi) \frac{M^3}{8} \right]
\]

\(B_\Pi\) and \(\tilde{B}_\Pi\) can be calculated in kinetic theory as functions of \(T\) and \(\mu_B\)
Dileptons

- Invariant mass spectra: w/ 1+1 D non-boost invariant hydro

```
M (GeV) 0.4 0.6 0.8 1 1.2 1.4

10^{-1} dN/dMdy (GeV^{-1})

Preliminary

Y = 0

ideal
bulk (w/ δf)
QCP (w/ δf)

Y = 2

ideal
bulk (w/ δf)
QCP (w/ δf)
```

- Bulk viscosity enhances low M spectra; the QCP can be visible

QGP: parton gas w/ \(m_{th} \)
Hadron: pion gas

Results are sensitive to the form of δf, \(m_{th} \), # of hadronic components, etc.
Summary

- Equation of state can be probed in heavy-ion collisions
 - $\mu_B = 0$
 - There is a mapping between ε/s vs. s and $<m_T>$ vs. dN/R^3dy
 - The data is compatible with lattice QCD EoS, more # of DOF may also work
 - $\mu_B \neq 0$
 - EoS is constructed using lattice QCD and resonance resonance gas
 - If there is a critical point, its signal may appear in invariant mass spectra of dileptons

- Future prospects
 - Systematic probing of the EoS at finite density
 - Changing the location of test QCP, comparing to the BES data, etc.
Summary

- Equation of state can be probed in heavy-ion collisions

 - $\mu_B = 0$
 - There is a mapping between ε/s vs. s and $<m_T>$ vs. dN/R^3dy
 - The data is compatible with lattice QCD EoS, more # of DOF may also work

 - $\mu_B \neq 0$
 - EoS is constructed using lattice QCD and resonance resonance gas
 - If there is a critical point, its signal may appear in invariant mass spectra of dileptons

- Future prospects

 - Systematic probing of the EoS at finite density
 - Changing the location of test QCP, comparing to the BES data, etc.
Summary

- Equation of state can be probed in heavy-ion collisions
 - $\mu_B = 0$
 - There is a mapping between ϵ/s vs. s and $<m_T>$ vs. dN/R^3dy
 - The data is compatible with lattice QCD EoS, more # of DOF may also work
 - $\mu_B \neq 0$
 - EoS is constructed using lattice QCD and resonance resonance gas
 - If there is a critical point, its signal may appear in invariant mass spectra of dileptons

- Future prospects
 - Systematic probing of the EoS at finite density
 - Changing the location of test QCP, comparing to the BES data, etc.
Summary

- Equation of state can be probed in heavy-ion collisions
 - $\mu_B = 0$
 - There is a mapping between ϵ/s vs. s and $<m_T>$ vs. dN/R^3dy
 - The data is compatible with lattice QCD EoS, more # of DOF may also work
 - $\mu_B \neq 0$
 - EoS is constructed using lattice QCD and resonance resonance gas
 - If there is a critical point, its signal may appear in invariant mass spectra of dileptons

- Future prospects
 - Systematic probing of the EoS at finite density
 - Changing the location of test QCP, comparing to the BES data, etc.
Fine

- Grazie per l'attenzione!
Where do the QCD matter go through?

- in heavy-ion collisions

- Much more broadly spread in event-by-event hydrodynamics (up to μ_B around 0.7 GeV)

Akihiko Monnai (IPhT), Probing the QCD equation of state at finite density