Toward an effective field theory approach in energy density functional theory

Chieh-Jen (Jerry) Yang

ECT* workshop
Feb/9/2017
Equation of state of neutron matter at N^2LO.

Strong dependence on V!
(cannot do sym. matter yet.)

S. Gandolfi, talk in ESNT workshop, 2017
Take another expansion
EDF

- Energy density functional (EDF) framework gives reasonable results at mean field, when sufficient amount of parameters (~10) are included.

But,…

- Include *more parameters won’t necessarily help*.

→ Limited predictive power.

Is there a way to do EFT ? (need to go beyond mean field to perform the test).
Turn off nucleon-nucleon d.o.f.,
Also, no EFT/ERE to guild the power counting

In term of power counting: Just like turn of the light in a cave.
Turn off nucleon-nucleon d.o.f.,
no EFT/ERE to guild the power counting

In term of power counting: Just like turn of the light in a cave.
First hint: a special case where an EFT expansion is known to work\ns
Pure neutron matter at very low density ($k_N a < 1$, $\rho < 10^{-6}$ fm$^{-3}$).

Lee & Yang formula (1957) describes the dilute system.

\Rightarrow Can be re-derived by EFT with matching to ERE

$$\frac{E_{NM}}{A} = \frac{\hbar^2 k_N^2}{2m} \left[\frac{3}{5} K.E. + \frac{2}{3\pi} (k_N a) + \frac{4}{35} (11 - 2 \ln 2) (k_N a)^2 \right] + O(k_N^3)$$

Expansion in $k_N a$

But the valid ρ is way too low!
If take physical value of $a = -18.9$ fm, then impossible to fit pure neutron matter EoS outside region $k_F a \ll 1$ (adding t_1, t_2, t_3 terms doesn’t help).

Diagrams gives V up to $O(k_F^8)$

- $-iC_0$
- $-iC_2 \frac{k^2+k'^2}{2}$
- $-iC_2' k \cdot k'$

<table>
<thead>
<tr>
<th>ρ [fm$^{-3}$]</th>
<th>E/A [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>200000</td>
</tr>
<tr>
<td>0.10</td>
<td>400000</td>
</tr>
<tr>
<td>0.15</td>
<td>600000</td>
</tr>
<tr>
<td>0.20</td>
<td>800000</td>
</tr>
</tbody>
</table>

10^5 10^6

Treatment: Re-sum

To be valid at higher ρ, $(k_N a)$ needs to be re-summed. (Steele (2000), Schafer (2005), Kaiser (2011))

$$\frac{E_{NM}}{N} = \frac{\hbar^2 k_N^2}{2m} \left[\frac{3}{5} + \frac{2}{3\pi} \frac{k_N a}{1 - 6k_N a(11 - 2 \ln 2)/(35\pi)} \right]$$

Neutron matter only
Very dilute regime
YGLO: Resumed-inspired functional

\[V = \frac{B_\beta}{1 - R_\beta \rho^{1/3}} + \frac{C_\beta \rho^{2/3}}{\text{higher order in L&Y to be resumed}^*} + \frac{D_\beta \rho^{2/3}}{\text{velocity-dep term}^*} + \frac{F_\beta \rho^\alpha}{3^+ - \text{body}} \]

\(B_\beta, R_\beta \) are fixed to reproduce first two term in Lee & Yang.

\[\Rightarrow B_\beta = 2\pi \frac{\hbar^2}{m} \frac{v-1}{\nu} a_\beta, \quad R_\beta = \frac{6}{35\pi} \left(\frac{6\pi^2}{\nu} \right)^{1/3} (11 - 2\ln 2) a_\beta. \]

(degeneracy: \(\nu = 2(4) \) for \(\beta = \frac{0}{\nu}, \frac{1}{\nu} \))

\(a_0 = -18.9 \text{fm,} \quad a_1 = -20 \text{ fm} \).

\(\frac{E}{A} = KE_\beta + \frac{B_\beta \rho}{1 - R_\beta \rho^{1/3} + C_\beta \rho^{2/3}} + D_\beta \rho^{5/3} + F_\beta \rho^{\alpha+1} \)
Able to describe both sym and pure neutron matter EoS up to $2\rho_0$ very well with only 4 free parameters each.

Up to $\rho=0.3$ fm$^{-3}$
Asymmetric case

Parabolic approximation

\[
\frac{E_\delta}{A}(\rho) = \frac{E_{\text{sym}}}{A}(\rho) + S(\rho)\delta^2,
\]

\[
(\delta = (\rho_N - \rho_p)/(\rho_N + \rho_p))
\]

\[
L = 3\rho_0 \left(\frac{dS}{d\rho} \right)_{\rho=\rho_0}
\]

Before: Lots of models fail

FIG. 4: Symmetry energy at saturation density as a function of its slope \(L\). The black lines delimit the phenomenological area constrained by the experimental determination of the electric dipole polarizability in \(^{208}\text{Pb}\). The blue dotted lines delimit the area constrained by the same measurement in \(^{68}\text{Ni}\), and the red dashed lines refer to the measurement done in \(^{120}\text{Sn}\). The yellow area is the overlap. Inset: density dependence of the Symmetry energy for the two YGLO parametrizations of this work.
Asymmetric case

Our result (prediction)

Satisfies the experimental constraint.

FIG. 4: Symmetry energy at saturation density as a function of its slope L. The black lines delimit the phenomenological area constrained by the experimental determination of the electric dipole polarizability in 208Pb. The blue dotted lines delimit the area constrained by the same measurement in 68Ni, and the red dashed lines refer to the measurement done in 120Sn. The yellow area is the overlap. Inset: density dependence of the Symmetry energy for the two YGLO parametrizations of this work.
Second hint: Unitarity limit

D Lacroix, A. Boulet, M. Grasso, C. J. Yang, submitted to prc

• Scale invariance tells \(\frac{E}{E_{FG}} = \xi \) (Bertch parameter)

Nuclear system \((a=-18.9 \text{ fm})\) is close to unitarity.

• \(|a| >> R\) (range of interaction) \(\frac{1}{|a_s|} \frac{1}{k_F} \Rightarrow 4 \times 10^{-6} < \rho < 0.002[\text{fm}^{-3}]\)

• Functional contains resum of \((a_s k_F)^{-1}\):

\[
\frac{E}{E_{FG}} = 1 - \frac{U_0}{1 - (a_s k_F)^{-1} U_1} \\
+ \frac{R_0(r_e k_F)}{[1 - R_1(a k_F)^{-1}][1 - R_1(a_s k_F)^{-1} + R_2(r_e k_F)]}
\]

No free parameters: \(U_i, R_i\) come from QMC data (with \(V_{\text{unitarity}}\))
Lesson:

- Nuclear (many-body) systems are not too far from the unitarity limit.
- Just a few more parameters might be sufficient to describe data up to $\rho=0.3\ \text{fm}^{-3}$, this explains why Skyrme works!
How to establish an EFT with a Skyrme-like interaction?
What will an EFT-based force look like?

• Leading order (LO): Need to make a guess.
• Based on renormalizability analysis
 C.J. Yang, M. Grasso, U. van Kolck, and K. Moghrabi, coming soon!

⇒ A good guess would be the t_0-t_3 model (or t_0 model, but it gives a very bad EOS).

Estimation of Breakdown scale

If require $O\left(\frac{k_F}{M_{hi}}\right)^1 > O\left(\frac{k_F}{M_{hi}}\right)^2$ to be valid up to $\rho = 0.3$ fm$^{-3}$. Then M_{hi} need to be at least 400 MeV.

Also, the low bound cannot do better than the unitarity limit.

Then, only applicable for $\rho > 4 \times 10^{-6}$[fm$^{-3}$].
Diagrammatic explanation of How Skyrme works
Dressing of propagator → V_{eff}

Leading order (LO)

Then, NLO includes:

\[V_{\text{NLO}}^{\text{eff}} \]

\[V_{\text{LO}}^{\text{eff}} G V_{\text{LO}}^{\text{eff}} \]

\[\text{diverge at least in } \Lambda k_F^3 \]

\[V_{\text{Sly}^5}^{\text{eff}} G V_{\text{Sly}^5}^{\text{eff}} \]

Dressing of propagator $\rightarrow V_{\text{eff}}$

Leading order (LO)

Then, NLO includes:

* $V_{\text{eff}}^{\text{NLO}}$ contains (at least) contact terms to renormalize $V_{\text{eff}}^{\text{LO}} G V_{\text{eff}}^{\text{LO}}$.
Counter term part of the NLO potential

\[V_{\text{eff}}^{NLO} : \] For \(t_0 - t_3 \) model, the divergence from \(V_{\text{eff}}^{LO} G V_{\text{eff}}^{LO} \) is:

\[O(k_F^3), O(k_F^{3+3\alpha}), O(k_F^{3+6\alpha}). \]

If want to keep \(\alpha \) free, \(\Rightarrow \) Minimum contact term required: \(Ck_F^{3+6\alpha} \).

Most general case: \(A k_F^3, B k_F^{3+3\alpha}, C k_F^{3+6\alpha} \).

In infinite matter, \(k_F^{3n} \) in-distinguishable with \(3\pi^2 \rho \)

\(\Rightarrow k_F^n \) -term in EOS could originated (at interaction level) from \((k - k')^{3n} \rho^\nu \), where \(\nu \) is an extra parameter to be decided in the fitting to finite nuclei.
NLO results (based on t_0-t_3 as LO)

$\alpha<1/6$ case*

C.J. Yang and M. Grasso, coming soon!

* For $\alpha>1/6$, $V_{\text{eff}}^{\text{NLO}}$ also includes t_1,t_2 terms.
Renormalization group (RG) check

Prescription: $B^{(*)}, C^{(*)}$

Prescription: $C^{(*)}$
How to apply to finite nuclei

- One simple version of beyond mean field interaction has been applied via PVC (with the phonon replaced by p-h pair).

- In principle, a general refitting is needed. One either perform the fit directly in the chosen beyond mean field scheme, or use subtraction.

- To be fully consistent, n parameters in the interaction means n subtractions are needed.
Future prospects

Try to bridge EFT ideas/techniques to mean field (and beyond) within EDF framework.

Mean field with potential models (effective interaction).
(e.g., Skyrme-type)

2nd order corrections

Add new effective interactions?
What is the proper form of it?
Is the improvement systematic?

Higher order corrections

Goal: Systematic treatment of the interactions.

Renormalization-group analysis + power counting check
Thank you
2nd order correction (symmetric & neutron matter)

\[
\frac{E}{A} = \frac{E^{(0)}}{A} + \frac{E^{(2)}}{A} + \ldots
\]

\[
\frac{E_{\text{sym}}^{(2)}}{A} = \frac{-3m^*}{64\pi k_F^3 (2\pi)^6} \sum_{S,T} (2T+1)(2S+1) \int_{C_1} d^3k_1 \int d^3k_2 \int d^3q [vGv]
\]

\[
G = \frac{1}{q^2 + q \cdot (k_1 - k_2)}
\]

Contour of integral (\(C_1\)):

| \(k_{1,2} \in [0, k_{F_{1,2}}] \)

| \(k_1 + q \gg k_{F_1}, k_2 - q \gg k_{F_2} \)
Results for nuclear matter

\[
\frac{\Delta E^{(2)}_{\text{sym}(l=0)}}{A} = - \frac{mk^6_p}{110880 \hbar^2 \pi^4} \left\{ \begin{array}{c}
-6534 + 1188 \ln [2] + 3564 \lambda - 19602 \lambda^3 - 5940 \lambda^5 \\
+ (1782 - 20790 \lambda^4) \ln \left[\frac{\lambda^2-1}{\lambda^2+1} \right] \\
+ (24948 \lambda^5 - 5940 \lambda^7) \ln \left[\frac{\lambda^2-1}{\lambda^2+1} \right] \\
- 14996 + 2112 \ln [2] + 5280 \lambda - 2860 \lambda^3 \\
- 48840 \lambda^5 - 18480 \lambda^7 + (2640 - 55440 \lambda^6) \ln \left[\frac{\lambda^2-1}{\lambda^2+1} \right] \\
+ (71280 \lambda^7 - 18480 \lambda^9) \ln \left[\frac{\lambda^2-1}{\lambda^2+1} \right] \\
- 9886 + 1128 \ln [2] + 2520 \lambda + 147 \lambda^2 - 3654 \lambda^5 \\
- 35280 \lambda^7 - 15120 \lambda^9 + (1260 - 41580 \lambda^6) \ln \left[\frac{\lambda^2-1}{\lambda^2+1} \right] \\
+ (55440 \lambda^9 - 15120 \lambda^{11}) \ln \left[\frac{\lambda^2-1}{\lambda^2+1} \right] \\
\end{array} \right\} \tilde{T}_{03}^{2} \tilde{T}_{03}^{1} \tilde{T}_{1}^{2} \tilde{T}_{1}^{1} \\
\]

Diverge as Λ^5

\[
\frac{\Delta E^{(2)}_{\text{sym}(l=1)}}{A} = - \frac{mk^6_p}{73920 \hbar^2 \pi^4} \left\{ \begin{array}{c}
-1033 + 156 \ln [2] + 420 \lambda + 140 \lambda^3 - 840 \lambda^5 \\
- 5880 \lambda^7 - 2520 \lambda^9 + (-210 + 6930 \lambda^8) \ln \left[\frac{\lambda^2-1}{\lambda^2+1} \right] \\
+ (9240 \lambda^9 - 2520 \lambda^{11}) \ln \left[\frac{\lambda^2-1}{\lambda^2+1} \right] \\
\end{array} \right\} \tilde{T}_{2}^{2} \tilde{T}_{2}^{1} \tilde{T}_{1}^{2} \tilde{T}_{1}^{1} \\
\]

Diverge as Λ^5

\[
\frac{\Delta E^{(2)}_{\text{neutr}(l=0)}}{A} = - \frac{mk^4_{FN}}{166320 \hbar^2 \pi^4} \left\{ \begin{array}{c}
-6534 + 1188 \ln [2] + 3564 \lambda - 19602 \lambda^3 - 5940 \lambda^5 \\
+ (1782 - 20790 \lambda^4) \ln \left[\frac{\lambda^2-1}{\lambda^2+1} \right] \\
+ (24948 \lambda^5 - 5940 \lambda^7) \ln \left[\frac{\lambda^2-1}{\lambda^2+1} \right] \\
- 14996 + 2112 \ln [2] + 5280 \lambda - 2860 \lambda^3 \\
- 48840 \lambda^5 - 18480 \lambda^7 + (2640 - 55440 \lambda^6) \ln \left[\frac{\lambda^2-1}{\lambda^2+1} \right] \\
+ (71280 \lambda^7 - 18480 \lambda^9) \ln \left[\frac{\lambda^2-1}{\lambda^2+1} \right] \\
- 9886 + 1128 \ln [2] + 2520 \lambda + 147 \lambda^2 - 3654 \lambda^5 \\
- 35280 \lambda^7 - 15120 \lambda^9 + (1260 - 41580 \lambda^6) \ln \left[\frac{\lambda^2-1}{\lambda^2+1} \right] \\
+ (55440 \lambda^9 - 15120 \lambda^{11}) \ln \left[\frac{\lambda^2-1}{\lambda^2+1} \right] \\
\end{array} \right\} \tilde{T}_{03}^{2} \tilde{T}_{03}^{1} \tilde{T}_{1}^{2} \tilde{T}_{1}^{1} \\
\]

Diverge as Λ^5

\[
\frac{\Delta E^{(2)}_{\text{neutr}(l=1)}}{A} = - \frac{mk^4_{FN}}{110880 \hbar^2 \pi^4} \left\{ \begin{array}{c}
-1033 + 156 \ln [2] + 420 \lambda + 140 \lambda^3 - 840 \lambda^5 \\
- 5880 \lambda^7 - 2520 \lambda^9 + (-210 + 6930 \lambda^8) \ln \left[\frac{\lambda^2-1}{\lambda^2+1} \right] \\
+ (9240 \lambda^9 - 2520 \lambda^{11}) \ln \left[\frac{\lambda^2-1}{\lambda^2+1} \right] \\
\end{array} \right\} \tilde{T}_{2}^{2} \tilde{T}_{2}^{1} \tilde{T}_{2}^{1} \tilde{T}_{1}^{2} \tilde{T}_{1}^{2} \tilde{T}_{1}^{1} \\
\]

Diverge as Λ^5
PART II:
RENORMALIZABILITY
• When $\Lambda \rightarrow \infty$, how the 2nd order terms behaves?

$$\frac{\Delta E_f^{(2)}(k_F)}{A} = \frac{3m}{2\pi^4\hbar^2} k_F^4 \left[A_0 + A_1 T_3 k_F^{2\alpha} + A_2 T_3^2 k_F^{6\alpha} + A_3 k_F^2 + A_4 T_3 k_F^{2+3\alpha} + A_5 k_F^4 \right],$$ \hspace{1cm} \text{Converge terms}

$$\frac{\Delta E_a^{(2)}(k_F, \lambda)}{A} = -\frac{m}{8\pi^4\hbar^2} \lambda k_F^3 \left[B_0(\lambda) + B_1(\lambda) T_3 k_F^{3\alpha} + B_2(\lambda) k_F^2 \right],$$ \hspace{1cm} \text{Diverge, } k_F\text{-dep appears in MF}

$$\frac{\Delta E_d^{(2)}(k_F, \lambda)}{A} = -\frac{m}{8\pi^4\hbar^2} \lambda k_F^3 \left[C_0 T_3^2 k_F^{6\alpha} + C_1 T_3 k_F^{2+3\alpha} + C_2 k_F^4 \right],$$ \hspace{1cm} \text{Diverge, } k_F\text{-dep not in MF}
• Idea: Absorb the \(\Lambda \)-divergence in 2nd order into mean field terms with the same \(k_F \)-dependence.

\[
\frac{\Delta E^{(2)}_f(k_F)}{A} = \frac{3m}{2\pi^4 \hbar^2} k_F^4 \left[A_0 + A_1 T_3 k_F^{2\alpha} + A_2 T_3 k_F^{6\alpha} + A_3 k_F^2 + A_4 T_3 k_F^{2+3\alpha} + A_5 k_F^4 \right],
\]

converge

\[
\frac{\Delta E^{(2)}_\alpha(k_F, \lambda)}{A} = -\frac{m}{8\pi^4 \hbar^2 \lambda k_F^3} \left[B_0(\lambda) + B_1(\lambda) T_3 k_F^{3\alpha} + B_2(\lambda) k_F^2 \right],
\]

Diverge, \(k_F \)-dep appears in MF

\[
\frac{\Delta E^{(2)}_e(k_F, \lambda)}{A} = \frac{m}{8\pi^4 \hbar^2 \lambda k_F^3} \left[C_0 T_3 k_F^{6\alpha} + C_1 T_3 k_F^{2+3\alpha} + C_2 k_F^4 \right],
\]

Diverge, \(k_F \)-dep not in MF

eliminate by setting \(\alpha=1/3 \) and \(t_1=t_2=0 \), or setting \(t_1=t_2=t_3=0 \).
• Idea: Absorb the Λ-divergence in 2nd order into mean field terms with the same k_F-dependence.

$$\frac{\Delta E_j^{(2)}(k_F)}{A} = \frac{3m}{2\pi^4\hbar^2} k_F^4 \left[A_0 + A_1 T_3 k_F^{3\alpha} + A_2 T_3^2 k_F^{6\alpha} + A_3 k_F^2 + A_4 T_3 k_F^{2+3\alpha} + A_5 k_F^4 \right], \quad \text{converge}$$

$$\frac{\Delta E_a^{(2)}(k_F, \lambda)}{A} = -\frac{m}{8\pi^4\hbar^2} \lambda k_F^3 \left[B_0(\lambda) + B_1(\lambda) T_3 k_F^{3\alpha} + B_2(\lambda) k_F^2 \right], \quad \text{Diverge, } k_F\text{-dep appears in MF}$$

Treatment 1: Absorb divergence into redefinition of parameters.
Treatment 2: Add counter terms correspond to each divergence.